Applying Fuzzy Analytic Hierarchy Process for Evaluating Service Quality of Online Auction

This paper applies fuzzy AHP to evaluate the service quality of online auction. Service quality is a composition of various criteria. Among them many intangible attributes are difficult to measure. This characteristic introduces the obstacles for respondents on reply in the survey. So as to overcome this problem, we invite fuzzy set theory into the measurement of performance and use AHP in obtaining criteria. We found the most concerned dimension of service quality is Transaction Safety Mechanism and the least is Charge Item. Other criteria such as information security, accuracy and information are too vital.

N-Sun Decomposition of Complete Graphs and Complete Bipartite Graphs

Graph decompositions are vital in the study of combinatorial design theory. Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G into disjoint isomorphic copies of H. An n-sun is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper we have proved that the complete graph of order 2n, K2n can be decomposed into n-2 n-suns, a Hamilton cycle and a perfect matching, when n is even and for odd case, the decomposition is n-1 n-suns and a perfect matching. For an odd order complete graph K2n+1, delete the star subgraph K1, 2n and the resultant graph K2n is decomposed as in the case of even order. The method of building n-suns uses Walecki's construction for the Hamilton decomposition of complete graphs. A spanning tree decomposition of even order complete graphs is also discussed using the labeling scheme of n-sun decomposition. A complete bipartite graph Kn, n can be decomposed into n/2 n-suns when n/2 is even. When n/2 is odd, Kn, n can be decomposed into (n-2)/2 n-suns and a Hamilton cycle.

Semi-Blind Two-Dimensional Code Acquisition in CDMA Communications

In this paper, we propose a new algorithm for joint time-delay and direction-of-arrival (DOA) estimation, here called two-dimensional code acquisition, in an asynchronous directsequence code-division multiple-access (DS-CDMA) array system. This algorithm depends on eigenvector-eigenvalue decomposition of sample correlation matrix, and requires to know desired user-s training sequence. The performance of the algorithm is analyzed both analytically and numerically in uncorrelated and coherent multipath environment. Numerical examples show that the algorithm is robust with unknown number of coherent signals.

Detecting Community Structure in Amino Acid Interaction Networks

In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the protein-s amino acids and whose edges are the interactions between them. Using a graph theory approach, we observe that according to their structural roles, the nodes interact differently. By leading a community structure detection, we confirm this specific behavior and describe thecommunities composition to finally propose a new approach to fold a protein interaction network.

Biorecognizable Nanoparticles Based On Hyaluronic Acid/Poly(ε-Caprolactone) Block Copolymer

Since hyaluronic acid (HA) receptor such as CD44 is over-expressed at sites of cancer cells, HA can be used as a targeting vehicles for anti-cancer drugs. The aim of this study is to synthesize block copolymer composed of hyaluronic acid and poly(ε-caprolactone) (HAPCL) and to fabricate polymeric micelles for anticancer drug targeting against CD44 receptor of tumor cells. Chemical composition of HAPCL was confirmed using 1H NMR spectroscopy. Doxorubicin (DOX) was incorporated into polymeric micelles of HAPCL. The diameters of HAPHS polymeric micelles were changed around 80nm and have spherical shapes. Targeting potential was investigated using CD44-overexpressing. When DOX-incorporated polymeric micelles was added to KB cells, they revealed strong red fluorescence color while blocking of CD44 receptor by pretreatment of free HA resulted in reduced intensity, indicating that HAPCL polymeric micelles have targetability against CD44 receptor.

Effect of Body Size and Condition Factor on Whole Body Composition of Hybrid (Catla catla ♂x Labeo rohita ♀) from Pakistan

In the present study, 49 Hybrid (Catla catla ♂ x Labeo rohita ♀) were sampled from Al-Raheem Fish Hatchery, Village Ali Pure Shamali, Jhang Road, 18 Km from Muzaffar Garh using a cast net and Live fishes were transported to research laboratory. Mean percentage for water found 79.13 %, ash 6.58 %, fat 2.22 % and protein content 12.06 % in whole wet body weight. It was observed that body constituents were found increasing in the same proportion with an increase in body weight while significant proportional increase was observed with total length. However, condition factor remained insignificant (P>0.05) with body constituents.

Transmission Pricing based on Voltage Angle Decomposition

In this paper a new approach for transmission pricing is presented. The main idea is voltage angle allocation, i.e. determining the contribution of each contract on the voltage angle of each bus. DC power flow is used to compute a primary solution for angle decomposition. To consider the impacts of system non-linearity on angle decomposition, the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow. Then, the contribution of each contract on power flow of each transmission line is computed based on angle decomposition. Contract-related flows are used as a measure for “extent of use" of transmission network capacity and consequently transmission pricing. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system.

Synthesis of Copper Sulfide Nanoparticles by Pulsed Plasma in Liquid Method

Copper sulfide nanoparticles (CuS) were successfully synthesized by the pulsed plasma in liquid method, using two copper rod electrodes submerged in molten sulfur. Low electrical energy and no high temperature were applied for synthesis. Obtained CuS nanoparticles were then analyzed by means of X-ray diffraction, Low and High Resolution Transmission Electron Microscopy, Electron Diffraction, X-ray Photoelectron, Raman Spectroscopies and Field Emission Scanning Electron Microscopy. XRD analysis revealed peaks for CuS with hexagonal phase composition. TEM and HRTEM studies showed that sizes of CuS nanoparticles ranged between 10-60 nm, with the average size of about 20 nm. Copper sulfide nanoparticles have short nanorod-like structure. Raman spectroscopy found peak for CuS at 474.2cm-1of Raman region.

An Empirical Analysis of the Board Composition Concerning Logistics Competencies

Empirical insights into the implementation of logistics competencies at the top management level are scarce. This paper addresses this issue with an explorative approach which is based on a dataset of 872 observations in the years 2000, 2004 and 2008 using quantitative content analysis from annual reports of the 500 publicly listed firms with the highest global research and development expenditures according to the British Department for Business Innovation and Skills. We find that logistics competencies are more pronounced in Asian companies than in their European or American counterparts. On an industrial level the results are quite mixed. Using partial point-biserial correlations we show that logistics competencies are positively related to financial performance.

Modeling the Vapor Pressure of Biodiesel Fuels

The composition, vapour pressure, and heat capacity of nine biodiesel fuels from different sources were measured. The vapour pressure of the biodiesel fuels is modeled assuming an ideal liquid phase of the fatty acid methyl esters constituting the fuel. New methodologies to calculate the vapour pressure and ideal gas and liquid heat capacities of the biodiesel fuel constituents are proposed. Two alternative optimization scenarios are evaluated: 1) vapour pressure only; 2) vapour pressure constrained with liquid heat capacity. Without physical constraints, significant errors in liquid heat capacity predictions were found whereas the constrained correlation accurately fit both vapour pressure and liquid heat capacity.

Generalized Morphological 3D Shape Decomposition Grayscale Interframe Interpolation Method

One of the main image representations in Mathematical Morphology is the 3D Shape Decomposition Representation, useful for Image Compression and Representation,and Pattern Recognition. The 3D Morphological Shape Decomposition representation can be generalized a number of times,to extend the scope of its algebraic characteristics as much as possible. With these generalizations, the Morphological Shape Decomposition 's role to serve as an efficient image decomposition tool is extended to grayscale images.This work follows the above line, and further develops it. Anew evolutionary branch is added to the 3D Morphological Shape Decomposition's development, by the introduction of a 3D Multi Structuring Element Morphological Shape Decomposition, which permits 3D Morphological Shape Decomposition of 3D binary images (grayscale images) into "multiparameter" families of elements. At the beginning, 3D Morphological Shape Decomposition representations are based only on "1 parameter" families of elements for image decomposition.This paper addresses the gray scale inter frame interpolation by means of mathematical morphology. The new interframe interpolation method is based on generalized morphological 3D Shape Decomposition. This article will present the theoretical background of the morphological interframe interpolation, deduce the new representation and show some application examples.Computer simulations could illustrate results.

High Strain Rate Characteristics of the Advanced Blast Energy Absorbers

The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. Several cellular materials are widely used as core of the sandwich structures and their properties influence the response of the entire element under impact load. To optimize their performance requires the characterisation of the core material behaviour at high strain rates and identification of the underlying mechanism. This work presents the study of high strain-rate characteristics of a specific porous lightweight blast energy absorbing foam using a Split Hopkinson Pressure Bar (SHPB) technique adapted to perform tests on low strength materials. Two different velocities, 15 and 30 m.s-1 were used to determine the strain sensitivity of the material. Foams were designed using two types of porous lightweight spherical raw materials with diameters of 30- 100 *m, combined with polymer matrix. Cylindrical specimens with diameter of 15 mm and length of 7 mm were prepared and loaded using a Split Hopkinson Pressure Bar apparatus to assess the relation between the composition of the material and its shock wave attenuation capacity.

Analysis of Temperature Change under Global Warming Impact using Empirical Mode Decomposition

The empirical mode decomposition (EMD) represents any time series into a finite set of basis functions. The bases are termed as intrinsic mode functions (IMFs) which are mutually orthogonal containing minimum amount of cross-information. The EMD successively extracts the IMFs with the highest local frequencies in a recursive way, which yields effectively a set low-pass filters based entirely on the properties exhibited by the data. In this paper, EMD is applied to explore the properties of the multi-year air temperature and to observe its effects on climate change under global warming. This method decomposes the original time-series into intrinsic time scale. It is capable of analyzing nonlinear, non-stationary climatic time series that cause problems to many linear statistical methods and their users. The analysis results show that the mode of EMD presents seasonal variability. The most of the IMFs have normal distribution and the energy density distribution of the IMFs satisfies Chi-square distribution. The IMFs are more effective in isolating physical processes of various time-scales and also statistically significant. The analysis results also show that the EMD method provides a good job to find many characteristics on inter annual climate. The results suggest that climate fluctuations of every single element such as temperature are the results of variations in the global atmospheric circulation.

Molecular Dynamics Simulation of Lubricant Adsorption and Thermal Depletion Instability

In this work, we incorporated a quartic bond potential into a coarse-grained bead-spring model to study lubricant adsorption on a solid surface as well as depletion instability. The surface tension density and the number density profiles were examined to verify the solid-liquid and liquid-vapor interfaces during heat treatment. It was found that both the liquid-vapor interfacial thickness and the solid-vapor separation increase with the temperatureT* when T*is below the phase transition temperature Tc *. At high temperatures (T*>Tc *), the solid-vapor separation decreases gradually as the temperature increases. In addition, we evaluated the lubricant weight and bond loss profiles at different temperatures. It was observed that the lubricant desorption is favored over decomposition and is the main cause of the lubricant failure at the head disk interface in our simulations.

Optimum Conditions for Effective Decomposition of Toluene as VOC Gas by Pilot-Scale Regenerative Thermal Oxidizer

Regenerative Thermal Oxidizer (RTO) is one of the best solutions for removal of Volatile Organic Compounds (VOC) from industrial processes. In the RTO, VOC in a raw gas are usually decomposed at 950-1300 K and the combustion heat of VOC is recovered by regenerative heat exchangers charged with ceramic honeycombs. The optimization of the treatment of VOC leads to the reduction of fuel addition to VOC decomposition, the minimization of CO2 emission and operating cost as well. In the present work, the thermal efficiency of the RTO was investigated experimentally in a pilot-scale RTO unit using toluene as a typical representative of VOC. As a result, it was recognized that the radiative heat transfer was dominant in the preheating process of a raw gas when the gas flow rate was relatively low. Further, it was found that a minimum heat exchanger volume to achieve self combustion of toluene without additional heating of the RTO by fuel combustion was dependent on both the flow rate of a raw gas and the concentration of toluene. The thermal efficiency calculated from fuel consumption and the decomposed toluene ratio, was found to have a maximum value of 0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height of 1.5m.

Catalytical Effect of Fluka 05120 on Methane Decomposition

Carboneous catalytical methane decomposition is an attractive process because it produces two valuable products: hydrogen and carbon. Furthermore, this reaction does not emit any green house or hazardous gases. In the present study, experiments were conducted in a thermo gravimetric analyzer using Fluka 05120 as carboneous catalyst to analyze its effectiveness in methane decomposition. Various temperatures and methane partial pressures were chosen and carbon mass gain was observed as a function of time. Results are presented in terms of carbon formation rate, hydrogen production and catalytical activity. It is observed that there is linearity in carbon deposition amount by time at lower reaction temperature (780 °C). On the other hand, it is observed that carbon and hydrogen formation rates are increased with increasing temperature. Finally, we observed that the carbon formation rate is highest at 950 °C within the range of temperatures studied.

Artificial Neural Networks for Identification and Control of a Lab-Scale Distillation Column Using LABVIEW

LABVIEW is a graphical programming language that has its roots in automation control and data acquisition. In this paper we have utilized this platform to provide a powerful toolset for process identification and control of nonlinear systems based on artificial neural networks (ANN). This tool has been applied to the monitoring and control of a lab-scale distillation column DELTALAB DC-SP. The proposed control scheme offers high speed of response for changes in set points and null stationary error for dual composition control and shows robustness in presence of externally imposed disturbance.

Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion

In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.

Optimizing Materials Cost and Mechanical Properties of PVC Electrical Cable-s Insulation by Using Mixture Experimental Design Approach

With the development of the Polyvinyl chloride (PVC) products in many applications, the challenge of investigating the raw material composition and reducing the cost have both become more and more important. Considerable research has been done investigating the effect of additives on the PVC products. Most of the PVC composites research investigates only the effect of single/few factors, at a time. This isolated consideration of the input factors does not take in consideration the interaction effect of the different factors. This paper implements a mixture experimental design approach to find out a cost-effective PVC composition for the production of electrical-insulation cables considering the ASTM Designation (D) 6096. The results analysis showed that a minimum cost can be achieved through using 20% virgin PVC, 18.75% recycled PVC, 43.75% CaCO3 with participle size 10 microns, 14% DOP plasticizer, and 3.5% CPW plasticizer. For maximum UTS the compound should consist of: 17.5% DOP, 62.5% virgin PVC, and 20.0% CaCO3 of particle size 5 microns. Finally, for the highest ductility the compound should be made of 35% virgin PVC, 20% CaCO3 of particle size 5 microns, and 45.0% DOP plasticizer.

Quadrilateral Decomposition by Two-Ear Property Resulting in CAD Segmentation

The objective is to split a simply connected polygon into a set of convex quadrilaterals without inserting new boundary nodes. The presented approach consists in repeatedly removing quadrilaterals from the polygon. Theoretical results pertaining to quadrangulation of simply connected polygons are derived from the usual 2-ear theorem. It produces a quadrangulation technique with O(n) number of quadrilaterals. The theoretical methodology is supplemented by practical results and CAD surface segmentation.