One-Class Support Vector Machines for Protein-Protein Interactions Prediction

Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.

GA Based Optimal Feature Extraction Method for Functional Data Classification

Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.

Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack

In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.

Identification of Arousal and Relaxation by using SVM-Based Fusion of PPG Features

In this paper, we propose a new method to distinguish between arousal and relaxation states by using multiple features acquired from a photoplethysmogram (PPG) and support vector machine (SVM). To induce arousal and relaxation states in subjects, 2 kinds of sound stimuli are used, and their corresponding biosignals are obtained using the PPG sensor. Two features–pulse to pulse interval (PPI) and pulse amplitude (PA)–are extracted from acquired PPG data, and a nonlinear classification between arousal and relaxation is performed using SVM. This methodology has several advantages when compared with previous similar studies. Firstly, we extracted 2 separate features from PPG, i.e., PPI and PA. Secondly, in order to improve the classification accuracy, SVM-based nonlinear classification was performed. Thirdly, to solve classification problems caused by generalized features of whole subjects, we defined each threshold according to individual features. Experimental results showed that the average classification accuracy was 74.67%. Also, the proposed method showed the better identification performance than the single feature based methods. From this result, we confirmed that arousal and relaxation can be classified using SVM and PPG features.

Face Authentication for Access Control based on SVM using Class Characteristics

Face authentication for access control is a face membership authentication which passes the person of the incoming face if he turns out to be one of an enrolled person based on face recognition or rejects if not. Face membership authentication belongs to the two class classification problem where SVM(Support Vector Machine) has been successfully applied and shows better performance compared to the conventional threshold-based classification. However, most of previous SVMs have been trained using image feature vectors extracted from face images of each class member(enrolled class/unenrolled class) so that they are not robust to variations in illuminations, poses, and facial expressions and much affected by changes in member configuration of the enrolled class In this paper, we propose an effective face membership authentication method based on SVM using class discriminating features which represent an incoming face image-s associability with each class distinctively. These class discriminating features are weakly related with image features so that they are less affected by variations in illuminations, poses and facial expression. Through experiments, it is shown that the proposed face membership authentication method performs better than the threshold rule-based or the conventional SVM-based authentication methods and is relatively less affected by changes in member size and membership.

Feature Subset Selection Using Ant Colony Optimization

Feature selection is an important step in many pattern classification problems. It is applied to select a subset of features, from a much larger set, such that the selected subset is sufficient to perform the classification task. Due to its importance, the problem of feature selection has been investigated by many researchers. In this paper, a novel feature subset search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Application of Functional Network to Solving Classification Problems

In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.

Extraction of Symbolic Rules from Artificial Neural Networks

Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.

Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment

Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.

Decomposition Method for Neural Multiclass Classification Problem

In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.

Dynamic Features Selection for Heart Disease Classification

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Classifier Based Text Mining for Neural Network

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.

Improving RBF Networks Classification Performance by using K-Harmonic Means

In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem.

Combining ILP with Semi-supervised Learning for Web Page Categorization

This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.

Using Genetic Programming to Evolve a Team of Data Classifiers

The purpose of this paper is to demonstrate the ability of a genetic programming (GP) algorithm to evolve a team of data classification models. The GP algorithm used in this work is “multigene" in nature, i.e. there are multiple tree structures (genes) that are used to represent team members. Each team member assigns a data sample to one of a fixed set of output classes. A majority vote, determined using the mode (highest occurrence) of classes predicted by the individual genes, is used to determine the final class prediction. The algorithm is tested on a binary classification problem. For the case study investigated, compact classification models are obtained with comparable accuracy to alternative approaches.

Inverse Sets-based Recognition of Video Clips

The paper discusses the mathematics of pattern indexing and its applications to recognition of visual patterns that are found in video clips. It is shown that (a) pattern indexes can be represented by collections of inverted patterns, (b) solutions to pattern classification problems can be found as intersections and histograms of inverted patterns and, thus, matching of original patterns avoided.

Eclectic Rule-Extraction from Support Vector Machines

Support vector machines (SVMs) have shown superior performance compared to other machine learning techniques, especially in classification problems. Yet one limitation of SVMs is the lack of an explanation capability which is crucial in some applications, e.g. in the medical and security domains. In this paper, a novel approach for eclectic rule-extraction from support vector machines is presented. This approach utilizes the knowledge acquired by the SVM and represented in its support vectors as well as the parameters associated with them. The approach includes three stages; training, propositional rule-extraction and rule quality evaluation. Results from four different experiments have demonstrated the value of the approach for extracting comprehensible rules of high accuracy and fidelity.

Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection

This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].

Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids

The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.