Academic Influence of Social Network Sites on the Collegiate Performance of Technical College Students

Social network sites (SNS) is an emerging phenomenon that is here to stay. The popularity and the ubiquity of the SNS technology are undeniable. Because most SNS are free and easy to use people from all walks of life and from almost any age are attracted to that technology. College age students are by far the largest segment of the population using SNS. Since most SNS have been adapted for mobile devices, not only do you find students using this technology in their study, while working on labs or on projects, a substantial number of students have been found to use SNS even while listening to lectures. This study found that SNS use has a significant negative impact on the grade point average of college students particularly in the first semester. However, this negative impact is greatly diminished by the end of the third semester partly because the students have adjusted satisfactorily to the challenges of college or because they have learned how to adequately manage their time. It was established that the kinds of activities the students are engaged in during the SNS use are the leading factor affecting academic performance. Of those activities, using SNS during a lecture or while studying is the foremost contributing factor to lower academic performance. This is due to “cognitive” or “information” bottleneck, a condition in which the students find it very difficult to multitask or to switch between resources leading to inefficiency in information retention and thus, educational performance.

Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Optimal Resource Configuration and Allocation Planning Problem for Bottleneck Machines and Auxiliary Tools

This study presents the case of an actual Taiwanese semiconductor assembly and testing manufacturer. Three major bottleneck manufacturing processes, namely, die bond, wire bond, and molding, are analyzed to determine how to use finite resources to achieve the optimal capacity allocation. A medium-term capacity allocation planning model is developed by considering the optimal total profit to satisfy the promised volume demanded by customers and to obtain the best migration decision among production lines for machines and tools. Finally, sensitivity analysis based on the actual case is provided to explore the effect of various parameter levels.

A Control Model for the Dismantling of Industrial Plants

The dismantling of disused industrial facilities such as nuclear power plants or refineries is an enormous challenge for the planning and control of the logistic processes. Existing control models do not meet the requirements for a proper dismantling of industrial plants. Therefore, the paper presents an approach for the control of dismantling and post-processing processes (e.g. decontamination) in plant decommissioning. In contrast to existing approaches, the dismantling sequence and depth are selected depending on the capacity utilization of required post-processing processes by also considering individual characteristics of respective dismantling tasks (e.g. decontamination success rate, uncertainties regarding the process times). The results can be used in the dismantling of industrial plants (e.g. nuclear power plants) to reduce dismantling time and costs by avoiding bottlenecks such as capacity constraints.

Effect of Waste Bottle Chips on Strength Parameters of Silty Soil

Laboratory consolidated undrained triaxial (CU) tests were carried out to study the strength behavior of silty soil reinforced with randomly plastic waste bottle chips. Specimens mixed with plastic waste chips in triaxial compression tests with 0.25, 0.50, 0.75, 1.0, and 1.25% by dry weight of soil and tree different length including 4, 8, and 12 mm. In all of the samples, the width and thickness of plastic chips were kept constant. According to the results, the amount and size of plastic waste bottle chips played an important role in the increasing of the strength parameters of reinforced silt compared to the pure soil. Because of good results, the suggested method of soil improvement can be used in many engineering problems such as increasing the bearing capacity and settlement reduction in foundations.

Context Detection in Spreadsheets Based on Automatically Inferred Table Schema

Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.

Application of Systems Engineering Tools and Methods to Improve Healthcare Delivery Inside the Emergency Department of a Mid-Size Hospital

Emergency department (ED) is considered as a complex system of interacting entities: patients, human resources, software and hardware systems, interfaces, and other systems. This paper represents a research for implementing a detailed Systems Engineering (SE) approach in a mid-size hospital in central Indiana. This methodology will be applied by “The Initiative for Product Lifecycle Innovation (IPLI)” institution at Indiana University to study and solve the crowding problem with the aim of increasing throughput of patients and enhance their treatment experience; therefore, the nature of crowding problem needs to be investigated with all other problems that leads to it. The presented SE methods are workflow analysis and systems modeling where SE tools such as Microsoft Visio are used to construct a group of system-level diagrams that demonstrate: patient’s workflow, documentation and communication flow, data systems, human resources workflow and requirements, leadership involved, and integration between ER different systems. Finally, the ultimate goal will be managing the process through implementation of an executable model using commercialized software tools, which will identify bottlenecks, improve documentation flow, and help make the process faster.

Framework Study on Single Assembly Line to Improve Productivity with Six Sigma and Line Balancing Approach

Six sigma is a framework that is used to identify inefficiency so that the cause of inefficiency will be known and right improvement to overcome cause of inefficiency can be conducted. This paper presents result of implementing six sigma to improve piston assembly line in Manufacturing Laboratory, Universitas Indonesia. Six sigma framework will be used to analyze the significant factor of inefficiency that needs to be improved which causes bottleneck in assembly line. After analysis based on six sigma framework conducted, line balancing method was chosen for improvement to overcome causative factor of inefficiency which is differences time between workstation that causes bottleneck in assembly line. Then after line balancing conducted in piston assembly line, the result is increase in efficiency. Efficiency is shown in the decreasing of Defects per Million Opportunities (DPMO) from 900,000 to 700,000, the increasing of level of labor productivity from 0.0041 to 0.00742, the decreasing of idle time from 121.3 seconds to 12.1 seconds, and the increasing of output, which is from 1 piston in 5 minutes become 3 pistons in 5 minutes.

Effects of Corruption and Logistics Performance Inefficiencies on Container Throughput: The Latin America Case

Trade liberalizations measures, as import tariff cuts, are not a sufficient trigger for trade growth. Given that price margins are narrow, traders and cargo operators tend to opt out of markets where the process of goods clearance is slow and costly. Excess paperwork and slow customs dispatch not only lead to institutional breakdowns and corruption but also to increasing transaction cost and trade constraints. The objective of this paper is, therefore, two-fold: First, to evaluate the relationship between institutional and infrastructural performance indexes and trade growth in container throughput; and, second, to investigate the causes for differences in container demurrage and detention fees in Latin American countries (using other emerging countries as benchmarking). The analysis is focused on manufactured goods, typically transported by containers. Institutional and infrastructure bottlenecks and, therefore, the country logistics efficiency – measured by the Logistics Performance Index (LPI, World Bank-WB) – are compared with other indexes, such as the Doing Business index (WB) and the Corruption Perception Index (Transparency International). The main results based on the comparison between Latin American countries and the others emerging countries point out in that the growth in containers trade is directly related to LPI performance. It has also been found that the main hypothesis is valid as aspects that more specifically identify trade facilitation and corruption are significant drivers of logistics performance. The exam of port efficiency (demurrage and detention fees) has demonstrated that not necessarily higher level of efficiency is related to lower charges; however, reductions in fees have been more significant within non-Latin American emerging countries.

Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair

A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.

Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles

The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.

Design of a Service-Enabled Dependable Integration Environment

The aim of information systems integration is to make all the data sources, applications and business flows integrated into the new environment so that unwanted redundancies are reduced and bottlenecks and mismatches are eliminated. Two issues have to be dealt with to meet such requirements: the software architecture that supports resource integration, and the adaptor development tool that help integration and migration of legacy applications. In this paper, a service-enabled dependable integration environment (SDIE), is presented, which has two key components, i.e., a dependable service integration platform and a legacy application integration tool. For the dependable platform for service integration, the service integration bus, the service management framework, the dependable engine for service composition, and the service registry and discovery components are described. For the legacy application integration tool, its basic organization, functionalities and dependable measures taken are presented. Due to its service-oriented integration model, the light-weight extensible container, the service component combination-oriented p-lattice structure, and other features, SDIE has advantages in openness, flexibility, performance-price ratio and feature support over commercial products, is better than most of the open source integration software in functionality, performance and dependability support.

Possible Number of Dwelling Units Using Waste Plastic Bottle for Construction

Unlike other metro cities of India, Bhubaneswar–the capital city of Odisha, is expected to reach 1-million-mark population by now. The demands of dwelling unit requirement mostly among urban poor belonging to Economically Weaker section (EWS) and Low Income groups (LIG) is becoming a challenge due to high housing cost and rents. As a matter of fact, it’s also noted that, with increase in population, the solid waste generation also increases subsequently affecting the environment due to inefficiency in collection of waste by local government bodies. Methods of utilizing Solid Waste - especially in form of Plastic bottles, Glass bottles and Metal cans (PGM) are now widely used as an alternative material for construction of low-cost building by Non-Government Organizations (NGOs) in developing countries like India to help the urban poor afford a shelter. The application of disposed plastic bottle used in construction of single dwelling significantly reduces the overall cost of construction to as much as 14% compared to traditional construction material. Therefore, considering its cost-benefit result, it’s possible to provide housing to EWS and LIGs at an affordable price. In this paper, we estimated the quantity of plastic bottles generated in Bhubaneswar which further helped to estimate the possible number of single dwelling unit that can be constructed on yearly basis so as to refrain from further housing shortage. The estimation results will be practically used for planning and managing low-cost housing business by local government and NGOs.

Mapping the Core Processes and Identifying Actors along with Their Roles, Functions and Linkages in Trout Value Chain in Kashmir, India

Rainbow trout (Oncorhynchus mykiss) and Brown trout (Salmo trutta fario) are the two species of trout which were once introduced by British in waters of Kashmir has well adapted to favorable climatic conditions. Cold water fisheries are one of the emerging sectors in Kashmir valley and trout holds an important place Jammu and Kashmir fisheries. Realizing the immense potential of trout culture in Kashmir region, the state fisheries department started privatizing trout culture under the centrally funded scheme of RKVY in which they provide 80 percent subsidy for raceway construction and supply of feed and seed for the first year since 2009-10 and at present there are 362 private trout farms. To cater the growing demand for trout in the valley, it is important to understand the bottlenecks faced in the propagation of trout culture. Value chain analysis provides a generic framework to understand the various activities and processes, mapping and studying linkages is first step that needs to be done in any value chain analysis. In Kashmir, it is found that trout hatcheries play a crucial role in insuring the continuous supply of trout seed in valley. Feed is most limiting factor in trout culture and the farmer has to incur high cost in payment and in the transportation of feed from the feed mill to farm. Lack of aqua clinic in the Kashmir valley needs to be addressed. Brood stock maintenance, breeding and seed production, technical assistance to private farmer, extension services have to be strengthened and there is need to development healthier environment for new entrepreneurs. It was found that trout farmers do not avail credit facility as there is no well define credit scheme for fisheries in the state. The study showed weak institutional linkages. Research and development should focus more on applied science rather than basic science.

Enhancement of Environmental Security by the Application of Wireless Sensor Network in Nigeria

Environmental security clearly articulates the perfections and developments of various communities around the world irrespective of the region, culture, religion or social inclination. Although, the present state of insecurity has become serious issue devastating the peace, unity, stability and progress of man and his physical environment particularly in developing countries. Recently, measure of security and it management in Nigeria has been a bottle-neck to the effectiveness and advancement of various sectors that include; business, education, social relations, politics and above all an economy. Several measures have been considered on mitigating environment insecurity such as surveillance, demarcation, security personnel empowerment and the likes, but still the issue remains disturbing. In this paper, we present the application of new technology that contributes to the improvement of security surveillance known as “Wireless Sensor Network (WSN)”. The system is new, smart and emerging technology that provides monitoring, detection and aggregation of information using sensor nodes and wireless network. WSN detects, monitors and stores information or activities in the deployed area such as schools, environment, business centers, public squares, industries, and outskirts and transmit to end users. This will reduce the cost of security funding and eases security surveillance depending on the nature and the requirement of the deployment.

Green Sustainability Using Radio Frequency Identification: Technology-Organization-Environment Perspective Using Two Case Studies

This qualitative case study seeks to understand and explain the deployment of radio frequency identification (RFID) systems in two countries (i.e., in Taiwan for the adoption of electric scooters and in Finland for supporting glass bottle recycling) using the “Technology-Organization-Environment” theoretical framework. This study also seeks to highlight the relevance and importance of pursuing environmental sustainability in firms and in society in general due to the social urgency of the issues involved.

Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media

Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of external carbon sources. The present study investigated the feasibility of Anammox Hybrid Reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. Experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.

A New OvS Approach in an Assembly Line Balancing Problem

One of the most famous techniques which affect the efficiency of a production line is the assembly line balancing (ALB) technique. This paper examines the balancing effect of a whole production line of a real auto glass manufacturer in three steps. In the first step, processing time of each activity in the workstations is generated according to a practical approach. In the second step, the whole production process is simulated and the bottleneck stations have been identified, and finally in the third step, several improvement scenarios are generated to optimize the system throughput, and the best one is proposed. The main contribution of the current research is the proposed framework which combines two famous approaches including Assembly Line Balancing and Optimization via Simulation technique (OvS). The results show that the proposed framework could be applied in practical environments, easily.

Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure

A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800o C up to 1200o C. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800o C and 1000o C produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200o C gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications.

A High Level Implementation of a High Performance Data Transfer Interface for NoC

The distribution of a single global clock across a chip has become the major design bottleneck for high performance VLSI systems owing to the power dissipation, process variability and multicycle cross-chip signaling. A Network-on-Chip (NoC) architecture partitioned into several synchronous blocks has become a promising approach for attaining fine-grain power management at the system level. In a NoC architecture the communication between the blocks is handled asynchronously. To interface these blocks on a chip operating at different frequencies, an asynchronous FIFO interface is inevitable. However, these asynchronous FIFOs are not required if adjacent blocks belong to the same clock domain. In this paper, we have designed and analyzed a 16-bit asynchronous micropipelined FIFO of depth four, with the awareness of place and route on an FPGA device. We have used a commercially available Spartan 3 device and designed a high speed implementation of the asynchronous 4-phase micropipeline. The asynchronous FIFO implemented on the FPGA device shows 76 Mb/s throughput and a handshake cycle of 109 ns for write and 101.3 ns for read at the simulation under the worst case operating conditions (voltage = 0.95V) on a working chip at the room temperature.