Vibration Attenuation Using Functionally Graded Material

The aim of the work was to attenuate the vibration amplitude in CESNA 172 airplane wing by using Functionally Graded Material instead of uniform or composite material. Wing strength was achieved by means of stress analysis study, while wing vibration amplitudes and shapes were achieved by means of Modal and Harmonic analysis. Results were verified by applying the methodology in a simple cantilever plate to the simple model and the results were promising and the same methodology can be applied to the airplane wing model. Aluminum models, Titanium models, and functionally graded materials of Aluminum and titanium results were compared to show a great vibration attenuation after using the FGM. Optimization in FGM gradation satisfied our objective of reducing and attenuating the vibration amplitudes to show the effect of using FGM in vibration behavior. Testing the Aluminum rich models, and comparing it with the titanium rich model was an optimization in this paper. Results have shown a significant attenuation in vibration magnitudes when using FGM instead of Titanium Plate, and Aluminium wing with FGM Spurs instead of Aluminium wings. It was also recommended that in future, changing the graphical scale to 1:10 or even 1:1 when the computers- capabilities allow.

Radiation Damage as Nonlinear Evolution of Complex System

Irradiated material is a typical example of a complex system with nonlinear coupling between its elements. During irradiation the radiation damage is developed and this development has bifurcations and qualitatively different kinds of behavior. The accumulation of primary defects in irradiated crystals is considered in frame work of nonlinear evolution of complex system. The thermo-concentration nonlinear feedback is carried out as a mechanism of self-oscillation development. It is shown that there are two ways of the defect density evolution under stationary irradiation. The first is the accumulation of defects; defect density monotonically grows and tends to its stationary state for some system parameters. Another way that takes place for opportune parameters is the development of self-oscillations of the defect density. The stationary state, its stability and type are found. The bifurcation values of parameters (environment temperature, defect generation rate, etc.) are obtained. The frequency of the selfoscillation and the conditions of their development is found and rated. It is shown that defect density, heat fluxes and temperature during self-oscillations can reach much higher values than the expected steady-state values. It can lead to a change of typical operation and an accident, e.g. for nuclear equipment.

Designing a Framework for Network Security Protection

As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.

Investigations on the Influence of Process Parameters on the Sliding Wear Behavior of Components Produced by Direct Metal Laser Sintering (DMLS)

This work presents the results of a study carried out to determine the sliding wear behavior and its effect on the process parameters of components manufactured by direct metal laser sintering (DMLS). A standard procedure and specimen had been used in the present study to find the wear behavior. Using Taguchi-s experimental technique, an orthogonal array of modified L8 had been developed. Sliding wear testing using pin-on-disk machine was carried out and analysis of variance (ANOVA) technique was used to investigate the effect of process parameters and to identify the main process parameter that influences the properties of wear behavior on the DMLS components. It has been found that part orientation, one of the selected process parameter had more influence on wear as compared to other selected process parameters.

Trustworthy in Virtual Organization

In open settings, the participants in virtual organization are autonomous and there is no central authority to ensure the felicity of their interactions. When agents interact in such settings, each relies upon being able to model the trustworthiness of the agents with whom it interacts. Fundamentally, such models must consider the past behavior of the other parties in order to predict their future behavior. Further, it is sensible for the agents to share information via referrals to trustworthy agents. In this article, trust is a bet on the future contingent actions of others" and enumerates six major factors supporting it: (1) reputation, (2) performance, (3) appearance, (4) accountability, (5) precommitment, and (6) contextual facilitation.

Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

A Study of the Built Environment Design Elements Embedded into the Multiple Criteria Strategic Planning Model for an Urban Renewal

The link between urban planning and design principles and the built environment of an urban renewal area is of interest to the field of urban studies. During the past decade, there has also been increasing interest in urban planning and design; this interest is motivated by the possibility that design policies associated with the built environment can be used to control, manage, and shape individual activity and behavior. However, direct assessments and design techniques of the links between how urban planning design policies influence individuals are still rare in the field. Recent research efforts in urban design have focused on the idea that land use and design policies can be used to increase the quality of design projects for an urban renewal area-s built environment. The development of appropriate design techniques for the built environment is an essential element of this research. Quality function deployment (QFD) is a powerful tool for improving alternative urban design and quality for urban renewal areas, and for procuring a citizen-driven quality system. In this research, we propose an integrated framework based on QFD and an Analytic Network Process (ANP) approach to determine the Alternative Technical Requirements (ATRs) to be considered in designing an urban renewal planning and design alternative. We also identify the research designs and methodologies that can be used to evaluate the performance of urban built environment projects. An application in an urban renewal built environment planning and design project evaluation is presented to illustrate the proposed framework.

Statistical Models of Network Traffic

Model-based approaches have been applied successfully to a wide range of tasks such as specification, simulation, testing, and diagnosis. But one bottleneck often prevents the introduction of these ideas: Manual modeling is a non-trivial, time-consuming task. Automatically deriving models by observing and analyzing running systems is one possible way to amend this bottleneck. To derive a model automatically, some a-priori knowledge about the model structure–i.e. about the system–must exist. Such a model formalism would be used as follows: (i) By observing the network traffic, a model of the long-term system behavior could be generated automatically, (ii) Test vectors can be generated from the model, (iii) While the system is running, the model could be used to diagnose non-normal system behavior. The main contribution of this paper is the introduction of a model formalism called 'probabilistic regression automaton' suitable for the tasks mentioned above.

A Study on Cement-Based Composite Containing Polypropylene Fibers and Finely Ground Glass Exposed to Elevated Temperatures

High strength concrete has been used in situations where it may be exposed to elevated temperatures. Numerous authors have shown the significant contribution of polypropylene fiber to the spalling resistance of high strength concrete. When cement-based composite that reinforced by polypropylene fibers heated up to 170 °C, polypropylene fibers readily melt and volatilize, creating additional porosity and small channels in to the matrix that cause the poor structure and low strength. This investigation develops on the mechanical properties of mortar incorporating polypropylene fibers exposed to high temperature. Also effects of different pozzolans on strength behaviour of samples at elevated temperature have been studied. To reach this purpose, the specimens were produced by partial replacement of cement with finely ground glass, silica fume and rice husk ash as high reactive pozzolans. The amount of this replacement was 10% by weight of cement to find the effects of pozzolans as a partial replacement of cement on the mechanical properties of mortars. In this way, lots of mixtures with 0%, 0.5%, 1% and 1.5% of polypropylene fibers were cast and tested for compressive and flexural strength, accordance to ASTM standard. After that specimens being heated to temperatures of 300, 600 °C, respectively, the mechanical properties of heated samples were tested. Mechanical tests showed significant reduction in compressive strength which could be due to polypropylene fiber melting. Also pozzolans improve the mechanical properties of sampels.

The Implications of Social Context Partisan Homogeneity for Voting Behavior: Survey Evidence from South Africa

Due to the legacy of apartheid segregation South Africa remains a divided society where most voters live in politically homogenous social environments. This paper argues that political discussion within one’s social context plays a primary role in shaping political attitudes and vote choice. Using data from the Comparative National Elections Project 2004 and 2009 South African post-election surveys, the paper explores the extent of social context partisan homogeneity in South Africa and finds that voters are not overly embedded in homogenous social contexts. It then demonstrates the consequences of partisan homogeneity on voting behavior. Homogenous social contexts tend to encourage stronger partisan loyalties and fewer defections in vote choice while voters in more heterogeneous contexts show less consistency in their attitudes and behaviour. Finally, the analysis shows how momentous sociopolitical events at the time of a particular election can change the social context, with important consequences for electoral outcomes.

A Visco-elastic Model for High-density Cellulose Insulation Materials

A macroscopic constitutive equation is developed for a high-density cellulose insulation material with emphasis on the outof- plane stress relaxation behavior. A hypothesis is proposed where the total stress is additively composed by an out-of-plane visco-elastic isotropic contribution and an in-plane elastic orthotropic response. The theory is validated against out-of-plane stress relaxation, compressive experiments and in-plane tensile hysteresis, respectively. For large scale finite element simulations, the presented model provides a balance between simplicity and capturing the materials constitutive behaviour.

Nanobiocomposites with Enhanced Cell Proliferation and Improved Mechanical Properties Based on Organomodified-Nanoclay and Silicone Rubber

Bionanotechnology deals with nanoscopic interactions between nanostructured materials and biological systems. Polymer nanocomposites with optimized biological activity have attracted great attention. Nanoclay is considered as reinforcing nanofiller in manufacturing of high performance nanocomposites. In current study, organomodified-nanoclay with negatively charged silicate layers was incorporated into biomedical grade silicone rubber. Nanoparticle loading has been tailored to enhance cell behavior. Addition of nanoparticles led to improved mechanical properties of substrate with enhanced strength and stiffness while no toxic effects was observed. Results indicated improved viability and proliferation of cells by addition of nanofillers. The improved mechanical properties of the matrix result in proper cell response through adjustment and arrangement of cytoskeletal fibers. Results can be applied in tissue engineering when enhanced substrates are required for improvement of cell behavior for in vivo applications.

Surface Phonon Polariton in InAlGaN Quaternary Alloys

III-nitride quaternary InxAlyGa1-x-yN alloys have experienced considerable interest as potential materials for optoelectronic applications. Despite these interesting applications and the extensive efforts to understand their fundamental properties, research on its fundamental surface property, i.e., surface phonon polariton (SPP) has not yet been reported. In fact, the SPP properties have been shown to provide application for some photonic devices. Hence, there is an absolute need for thorough studies on the SPP properties of this material. In this work, theoretical study on the SPP modes in InAlGaN quaternary alloys are reported. Attention is focus on the wurtzite (α-) structure InxAlyGa1-x-yN semi-crystal with different In composition, x ranging from 0 to 0.10 and constant Al composition, y = 0.06. The SPP modes are obtained through the theoretical simulation by means of anisotropy model. The characteristics of SP dispersion curves are discussed. Accessible results in terms of the experimental point of view are also given. Finally, the results revealed that the SPP mode of α-InxAlyGa1-x-yN semiconductors exhibits two-mode behavior.

Rheological Behaviors of Crude Oil in the Presence of Water

The rheological properties of light crude oil and its mixture with water were investigated experimentally. These rheological properties include steady flow behavior, yield stress, transient flow behavior, and viscoelastic behavior. A RheoStress RS600 rheometer was employed in all of the rheological examination tests. The light crude oil exhibits a Newtonian and for emulsion exhibits a non-Newtonian shear thinning behavior over the examined shear rate range of 0.1–120 s-1. In first time, a series of samples of crude oil from the Algerian Sahara has been tested and the results expressed in terms of τ=f(γ) have demonstrated their Newtonian character for the temperature included in [20°C, 70°C]. In second time and at T=20°C, the oil-water emulsions (30%, 50% and 70%) by volume of water), thermodynamically stable, have demonstrated a non-Newtonian rheological behavior that is to say, Herschel-Bulkley and Bingham types. For each type of crude oil-water emulsion, the rheological parameters are calculated by numerical treatment of results.

Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials

The field of biomedical materials plays an imperative requisite and a critical role in manufacturing a variety of biological artificial replacements in a modern world. Recently, titanium (Ti) materials are being used as biomaterials because of their superior corrosion resistance and tremendous specific strength, free- allergic problems and the greatest biocompatibility compared to other competing biomaterials such as stainless steel, Co-Cr alloys, ceramics, polymers, and composite materials. However, regardless of these excellent performance properties, Implantable Ti materials have poor shear strength and wear resistance which limited their applications as biomaterials. Even though the wear properties of Ti alloys has revealed some improvements, the crucial effectiveness of biomedical Ti alloys as wear components requires a comprehensive deep understanding of the wear reasons, mechanisms, and techniques that can be used to improve wear behavior. This review examines current information on the effect of thermal and thermomechanical processing of implantable Ti materials on the long-term prosthetic requirement which related with wear behavior. This paper focuses mainly on the evolution, evaluation and development of effective microstructural features that can improve wear properties of bio grade Ti materials using thermal and thermomechanical treatments.

Factors Influence Depositors- Withdrawal Behavior in Islamic Banks: A Theory of Reasoned Action

Unlike its conventional counterpart, Islamic principles forbid Islamic banks to take any interest-related income and thus makes deposits from depositors as an important source of fund for its operational and financing. Consequently, the risk of deposit withdrawal by depositors is an important aspect that should be wellmanaged in Islamic banking. This paper aims to investigate factors that influence depositors- withdrawal behavior in Islamic banks, particularly in Malaysia, using the framework of theory of reasoned action. A total of 368 respondents from Klang valley are involved in the analysis. The paper finds that all the constructs variable i.e. normative beliefs, subjective norms, behavioral beliefs, and attitude towards behavior are perceived to be distinct by the respondents. In addition, the structural equation model is able to verify the structural relationships between subjective norms, attitude towards behavior and behavioral intention. Subjective norms gives more influence to depositors- decision on deposit withdrawal compared to attitude towards behavior.

Analysis of Statistical Data on Social Resources Dimension of Occupational Status Attainment: A Rational Choice Approach

The aim of the present study is to analyze empirical researches on the social resources dimension of occupational status attainment process and relate them to the rational choice approach. The analysis suggests that the existing data on the strength of ties aspect of social resources is insufficient and does not allow any implication concerning rational actor-s behavior. However, the results concerning work relation aspect are more encouraging.

TiO2-Zeolite Y Catalyst Prepared Using Impregnation and Ion-Exchange Method for Sonocatalytic Degradation of Amaranth Dye in Aqueous Solution

Characteristics and sonocatalytic activity of zeolite Y catalysts loaded with TiO2 using impregnation and ion exchange methods for the degradation of amaranth dye were investigated. The Ion-exchange method was used to encapsulate the TiO2 into the internal pores of the zeolite while the incorporation of TiO2 mostly on the external surface of zeolite was carried out using the impregnation method. Different characterization techniques were used to elucidate the physicochemical properties of the produced catalysts. The framework of zeolite Y remained virtually unchanged after the encapsulation of TiO2 while the crystallinity of zeolite decreased significantly after the incorporation of 15 wt% of TiO2. The sonocatalytic activity was enhanced by TiO2 incorporation with maximum degradation efficiencies of 50% and 68% for the encapsulated titanium and titanium loaded onto the zeolite, respectively after 120min of reaction. Catalysts characteristics and sonocatalytic behaviors were significantly affected by the preparation method and the location of TiO2 introduced with zeolite structure. Behaviors in the sonocatalytic process were successfully correlated with the characteristics of the catalysts used.

Drying of Papaya (Carica papaya L.) Using a Microwave-vacuum Dryer

In present work, drying characteristics of fresh papaya (Carica papaya L.) was studied to understand the dehydration process and its behavior. Drying experiments were carried out by a laboratory scaled microwave-vacuum oven. The parameters affecting drying characteristics including operating modes (continuous, pulsed), microwave power (400 and 800 W), and vacuum pressure (20, 30, and 40 cmHg) were investigated. For pulsed mode, two levels of power-off time (60 and 120 s) were used while the power-on time was fixed at 60 s and the vacuum pressure was fixed at 40 cmHg. For both operating modes, the effects of drying conditions on drying time, drying rate, and effective diffusivity were investigated. The results showed high microwave power, high vacuum, and pulsed mode of 60 s-on/60 s-off favored drying rate as shown by the shorten drying time and increased effective diffusivity. The drying characteristics were then described by Page-s model, which showed a good agreement with experimental data.