Surface Phonon Polariton in InAlGaN Quaternary Alloys

III-nitride quaternary InxAlyGa1-x-yN alloys have experienced considerable interest as potential materials for optoelectronic applications. Despite these interesting applications and the extensive efforts to understand their fundamental properties, research on its fundamental surface property, i.e., surface phonon polariton (SPP) has not yet been reported. In fact, the SPP properties have been shown to provide application for some photonic devices. Hence, there is an absolute need for thorough studies on the SPP properties of this material. In this work, theoretical study on the SPP modes in InAlGaN quaternary alloys are reported. Attention is focus on the wurtzite (α-) structure InxAlyGa1-x-yN semi-crystal with different In composition, x ranging from 0 to 0.10 and constant Al composition, y = 0.06. The SPP modes are obtained through the theoretical simulation by means of anisotropy model. The characteristics of SP dispersion curves are discussed. Accessible results in terms of the experimental point of view are also given. Finally, the results revealed that the SPP mode of α-InxAlyGa1-x-yN semiconductors exhibits two-mode behavior.





References:
[1] J. Li, K. B. Nam, K. H. Kim, J. Y. Lin, and H. X. Jiang, "Growth and
optical properties of InxAlyGa1-x-yN quaternary alloys," Appl. Phys. Lett.,
vol. 78, No. 1, pp. 61-63, 2001. (And references therein).
[2] F. G. McIntosh, K. S. Boutros, J. C. Roberts, S. M. Bedair, E. L. Piner,
and N. A. El-Masry, "Growth and characterization of AlInGaN
quaternary alloys," Appl. Phys. Lett., vol. 68, No. 1, pp. 40-42, 1996.
[3] Y. A. Chang, S. H. Yen, T. C. Wang, H. C. Kuo, Y. K. Kuo, T. C. Lu,
and S. C. Wang, "Experimental and theoretical analysis on ultraviolet
370 nm AlGaInN light-emitting diodes," Semicond. Sci. Technol., vol.
21, No. 5, pp. 598-603, 2006.
[4] J. P. Liu , R. Q. Jin, J. C. Zhang, J. F. Wang, M. Wu, J. J. Zhu, D. G.
Zhao, Y. T. Wang, and H. Yang, "Indium mole fraction effect on the
structural and optical properties of quaternary AlInGaN epilayers," J.
Phys. D: Appl. Phys., vol. 37, No. 15, pp. 2060-2063, 2004. (And
references therein).
[5] Y. Liu, T. Egawa, H. Ishikawa, B. J. Zhang, and M. S. Hao, "Influence
of Growth Temperature on Quaternary AlInGaN Epilayers for
Ultraviolet Emission Grown by Metalorganic Chemical Vapor
Deposition," Jpn. J. Appl. Phys., vol. 43, No. 5A, pp. 2414-2418, 2004.
(And references therein).
[6] L. Zhang and J. J. Shi, "Surface phonon polariton modes of wurtzite
structure AlxGa1-xN thin film," Phys. Status Solidi B, vol. 246, No. 1, pp.
164-169, 2009.
[7] L. Zhang, "Surface phonon and confined phonon polaritons in wurtizte
nitride thin-film structures," Surf. Rev. Lett., vol. 15, No. 4, pp. 493-501,
2008.
[8] J. Bao and X. X. Liang, "Surface and interface phonon-polaritons in
bilayer systems of polar ternary mixed crystals," J. Appl. Phys., vol. 104,
No. 3, pp. 033545-1 - 033545-7, 2008.
[9] S. S. Ng, Z. Hassan, and H. Abu Hassan, "Composition dependence of
surface shonon polariton mode in wurtzite InxGa1-xN (0 Ôëñ x Ôëñ 1) ternary
alloy," Chin. Phys. Lett., vol. 25, No. 12, pp. 4378-4380, 2008.
[10] S. S. Ng, Z. Hassan, and H. Abu Hassan, "Surface phonon polariton of
wurtzite GaN thin film grown on c-plane sapphire substrate," Solid State
Commun., vol. 145, No. 11-12, pp. 535-538, 2008.
[11] M. D. He, L. L. Wang, W. Q. Huang, X. J. Wang, and B. S. Zou,
"Surface phonon polaritons in a semi-infinite superlattice with a cap
layer consisting of ternary crystal," Phys. Lett. A, vol. 360, No. 4-5, pp.
638-644, 2007.
[12] S. S. Ng, Z. Hassan, and H. Abu Hassan, "Surface phonon polariton
mode of wurtzite structure AlxGa1−xN (0 Ôëñ x Ôëñ 1) thin films," Appl. Phys.
Lett., vol. 91, No. 8, pp. 081909-1 - 081909-3, 2007.
[13] S. S. Ng, Z. Hassan, and H. Abu Hassan, "Experimental and theoretical
studies of surface phonon polariton of AlN thin film," Appl. Phys. Lett.,
vol. 90, No. 8, pp. 081902-1 - 081902-3, 2007.
[14] V. Y. Davydov, A. V. Subashiev, T. S. Cheng, C. T. Foxon, I. N.
Goncharuk, A. N. Smirnovn, and R. V. Zolotareva, "Raman scattering
by surface polaritons in cubic GaN epitaxial Layers," Solid State
Commun., vol. 104, No. 7, pp. 397-400, 1997.
[15] K. Torii, T. Koga, T. Sota, T. Azuhata, S. F. Chichibu, and S. Nakamura,
"An attenuated-total-reflection study on the surface phonon-polariton in
GaN," J. Phys.: Condens. Matter, vol. 12, No. 31, pp. 7041-7044, 2000.
[16] M. S. Anderson, "Enhanced infrared absorption with dielectric
nanoparticles," Appl. Phys. Lett., vol. 83, No. 14, pp. 2964-2966, 2003.
[17] J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y.
Chen, "Coherent emission of light by thermal sources, Nature, vol. 416,
pp. 61-64, 2002.
[18] A. J. Huber, N. Ocelic, R. Hillenbrand, "Local excitation and
interference of surface phonon polaritons studied by near-field infrared
microscopy," J. Microscopy, vol. 229, No. 3, pp. 389-395, 2008.
[19] M. G. Cottam and D. R. Tilley, Introduction to surface and superlattice
excitons. New York: Cambridge University Press, 1989.
[20] D. N. Mirlin, "Surface Polaritons," in Surface Polaritons, V. M.
Agranovich and D. L. Mills, Eds. Amsterdam: North-Holland, 1982, pp.
3-67.
[21] S. Adachi, Optical properties of crystalline and amorphous
semiconductors: Materials and fundamental principles, Boston: Kluwer
Academic, 1998, p. 38.
[22] C. K. Williams, T. H. Glisson, J. R. Hauser and M. A. Littlejohn,
"Energy bandgap and lattice constant contours of III-V quaternary alloys of the form AxByCzD or ABxCyDz," J. Electron. Mater., vol. 7, no. 5, pp.
639-646, 1978.
[23] V. Y. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D.
Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov,
and T. Inushima, "Experimental and theoretical studies of phonons in
hexagonal InN," Appl. Phys. Lett., vol. 75, No. 21, pp. 3297-3299, 1999.
[24] B. Abbar, B. Bouhafs, H. Aourag, G. Nouet, and P. Ruterana, "Firstprinciples
calculations of optical properties of AlN, GaN, and InN
compounds under hydrostatic pressure," Phys. Status Solidi B, vol. 228,
No. 2, pp. 457-460, 2001.
[25] V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul,
O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R.
A., Evarestov, "Phonon dispersion and Raman scattering in hexagonal
GaN and AlN," Phys. Rev. B, vol. 58, No. 19, pp. 12899-12907, 1998.
[26] G. Yu, N. L. Rowell, and D. J. Lockwood, "Anisotropic infrared optical
properties of GaN and sapphire," J. Vac. Sci. Technol. A, vol. 22, No. 4,
pp. 1110-1114, 2004.
[27] U. Haboek, H. Siegle, A. Hoffmann, and C. Thomsen, "Lattice dynamics
in GaN and AlN probed with first- and second-order Raman
spectroscopy," Phys. Status Solidi C, vol. 0, No. 6, pp. 1710-1731, 2003.
[28] C. Persson, R. Ahyja, A. Ferreira da Silva, and B. Johansson, "Firstprinciple
calculations of optical properties of wurtzite AlN and GaN," J.
Cryst. Growth, vol. 231, No. 3, 2001, pp. 407-414.
[29] A. Otto, "Spectroscopy of Surface Polaritons by Attenuated Total
Reflection," in Optical Properties of Solids: New Developments, B. O.
Seraphin, Ed. Norton-Holland: Amsterdam, 1976, p. 677.
[30] PIKE Technologies, Inc., "ATR-Theory and Applications," PIKE
Technologies, Madison, Application Note, 2005.
[31] H. Grille, Ch. Schnittler, and F. Bechstedt, "Phonons in ternary group-III
nitride alloys," Phys. Rev. B, vol. 61, No. 9, pp.6091-6105, 2000.