Polyethylenimine Coated Carbon Nanotube for Detecting Rancidity in Frying Oil

Chemical detection is still a continuous challenge when it comes to designing single-walled carbon nanotube (SWCNT) sensors with high selectivity, especially in complex chemical environments. A perfect example of such an environment would be in thermally oxidized soybean oil. At elevated temperatures, oil oxidizes through a series of chemical reactions which results in the formation of monoacylglycerols, diacylglycerols, oxidized triacylglycerols, dimers, trimers, polymers, free fatty acids, ketones, aldehydes, alcohols, esters, and other minor products. In order to detect the rancidity of oxidized soybean oil, carbon nanotube chemiresistor sensors have been coated with polyethylenimine (PEI) to enhance the sensitivity and selectivity. PEI functionalized SWCNTs are known to have a high selectivity towards strong electron withdrawing molecules. The sensors were very responsive to different oil oxidation levels and furthermore, displayed a rapid recovery in ambient air without the need of heating or UV exposure.

A Task-Based Design Approach for Augmented Reality Systems

User interaction components of Augmented Reality (AR) systems have to be tested with users in order to find and fix usability problems as early as possible. In this paper we will report on a user-centered design approach for AR systems following the experience acquired during the design and evaluation of a software prototype for an AR-based educational platform. In this respect we will focus on the re-design of the user task based on the results from a formative usability evaluation. The basic idea of our approach is to describe task scenarios in a tabular format, to develop a task model in a task modeling environment and then to simulate the execution.

Augmented Reality in Schools: Preliminary Evaluation Results from a Summer School

Formative usability evaluation aims at finding usability problems during the development process. The earlier these problems are identified, the less expensive to fix they are. This paper presents some preliminary results from a formative usability testing of the 1st prototype developed for the ARiSE (Augmented Reality in School Environments) project.

Quality Evaluation of Cookies Produced from Blends of Sweet Potato and Fermented Soybean Flour

The study was conducted to evaluate the quality characteristics of cookies produced from sweet potato-fermented soybean flour. Cookies were subjected to proximate and sensory analysis to determine the acceptability of the product. Protein, fat and ash increased as the proportion of soybean flour increased, ranging from 13.8-21.7, 1.22-5.25 and 2.20-2.57 respectively. The crude fibre content was within the range of 3.08-4.83%. The moisture content of the cookies decreased with increase in soybean flour from 3.42- 2.13%. Cookies produced from whole sweet potato flour had the highest moisture content of 3.42% while 30% substitution had the lowest moisture content 2.13%. A nine point hedonic scale was used to evaluate the organoleptic characteristics of the cookies. The sensory analysis indicated that there was no significant difference between the cookies produced even when compared to the control 100% sweet potato cookies. The overall acceptance of the cookies was ranked to 20% soybean flour substitute.

Determination of Sea Transport Route for Staple Food Distribution to Achieve Food Security in the Eastern Indonesia

Effectiveness and efficiency of food distribution is necessary to maintain food security in a region. Food supply varies among regions depending on their production capacity; therefore, it is necessary to regulate food distribution. Sea transportation could play a great role in the food distribution system. To play this role and to support transportation needs in the Eastern Indonesia, sea transportation shall be supported by fleet which is adequate and reliable, both in terms of load and worthiness. This research uses Linear Programming (LP) method to analyze food distribution pattern in order to determine the optimal distribution system. In this research, transshipment points have been selected for regions in one province. Comparison between result of modeling and existing shipping route reveals that from 369 existing routes, 54 routes are used for transporting rice, corn, green bean, peanut, soybean, sweet potato, and cassava.

Effect of Heat-Moisture Treatment on the Formation and Properties of Resistant Starches From Mung Bean (Phaseolus radiatus) Starches

Mung bean starches were subjected to heat-moisture treatment (HMT) by different moisture contents (15%, 20%, 25%, 30% and 35%) at 120Ôäâ for 12h. The impact on the yields of resistant starch (RS), microstructure, physicochemical and functional properties was investigated. Compared to native starch, the RS content of heat-moisture treated starches increased significantly. The RS level of HMT-20 was the highest of all the starches. Birefringence was displayed clear at the center of native starch. For HMT starches, pronounced birefringence was exhibited on the periphery of starch granules; however, birefringence disappeared at the centre of some starch granules. The shape of HMT starches hadn-t been changed and the integrity of starch granules was preserved for all the conditions. Concavity could be observed on HMT starches under scanning electronic microscopy. After HMT, apparent amylose contents were increased and starch macromolecule was degraded in comparison with those of native starch. There was a reduction in swelling power on HMT starches, but the solubility of HMT starches was higher than that of native starch. Both of native and HMT starches showed A-type X-ray diffraction pattern. Furthermore, there is a higher intensity at the peak of 15.0 and 22.9 Å than those of native starch.

Strategic Human Resources Management practice, “Are We There yet“? The Incorporation of a Human Resources Strategy within a University's Strategic Plan

This study examines the structural and systematic processes of the Human Resources Division at The University of the West Indies, St. Augustine, Trinidad and Tobago for evidence of incorporation of the University's 2012- 2017 Strategic Plan. In conducting the study the structure of the Human Resources Management Division and its functions were carefully reviewed and measured against the strategic direction of the organisation. Findings indicate disconnect between these areas as there is apparent failure of the Human Resources Division to totally align its mandate with that of the organisation-s strategic direction. This action serves to threaten the viability of the organisation and its efficiency and effectiveness as an institution. The recommendations being put forward are for the realignment of the Human Resources Management Division and for its focus to mirror that of the organisation and the organisation-s goals and objectives. This may entail a restructuring of the Division.

Biodiesel Production from Soybean Oil over TiO2 Supported nano-ZnO

TiO2 supported nano-ZnO catalyst was prepared by deposition-precipitation and tested for the trans-esterification reaction of soybean oil to biodiesel. The TiO2 support stabilized the nano-ZnO in a dispersed form with limited crystallite size compared to the unsupported ZnO. The final ZnO dispersion and crystallite size and the material transfer resistance in the catalyst significantly influenced the supported nano-ZnO catalyst performance.

Silicone on Blending Vegetal Petrochemical Based Polyurethane

Polyurethane foam (PUF) is formed by a chemical reaction of polyol and isocyanate. The aim is to understand the impact of Silicone on synthesizing polyurethane in differentiate volume of molding. The method used was one step process, which is simultaneously caried out a blending polyol (petroleum polyol and soybean polyol), a TDI (2,4):MDI (4,4-) (80:20), a distilled water, and a silicone. The properties of the material were measured via a number of parameters, which are polymer density, compressive strength, and cellular structures. It is found that density of polyurethane using silicone with volume of molding either 250 ml or 500 ml is lower than without using silicone.

Viscosity of Vegetable Oils and Biodiesel and Energy Generation

The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.

Task Modeling for User Interface Design: A Layered Approach

The model-based approach to user interface design relies on developing separate models that are capturing various aspects about users, tasks, application domain, presentation and dialog representations. This paper presents a task modeling approach for user interface design and aims at exploring the mappings between task, domain and presentation models. The basic idea of our approach is to identify typical configurations in task and domain models and to investigate how they relate each other. A special emphasis is put on application-specific functions and mappings between domain objects and operational task structures. In this respect, we will distinguish between three layers in the task decomposition: a functional layer, a planning layer, and an operational layer.

Investigation of Water Deficit Stress on Agronomical Traits of Soybean Cultivars in Temperate Climate

In order to investigate water deficit stress on 24 of soybean (Glycine Max. L) cultivars and lines in temperate climate, an experiment was conducted in Iran Seed and Plant Improvement Institute. Stress levels were irrigation after evaporation of 50, 100, 150 mm water from pan, class A. Randomized Completely Block Design was arranged for each stress levels. Some traits such as, node number, plant height, pod number per area, grain number per pod, grain number per area, 1000 grains weight, grain yield and harvest index were measured. Results showed that water deficit stress had significant effect on node number, plant height, pod number per area, grain number per pod, grain number per area, 1000 grains weight and harvest index. Also all of agronomic traits except harvest index influenced significantly by cultivars and lines. The least and most grain yield was belonged to Ronak X Williams and M41 x Clark respectively.

Biplot Analysis for Evaluation of Tolerance in Some Bean (Phaseolus vulgaris L.) Genotypes to Bean Common Mosaic Virus (BCMV)

The common bean is the most important grain legume for direct human consumption in the world and BCMV is one of the world's most serious bean diseases that can reduce yield and quality of harvested product. To determine the best tolerance index to BCMV and recognize tolerant genotypes, 2 experiments were conducted in field conditions. Twenty five common bean genotypes were sown in 2 separate RCB design with 3 replications under contamination and non-contamination conditions. On the basis of the results of indices correlations GMP, MP and HARM were determined as the most suitable tolerance indices. The results of principle components analysis indicated 2 first components totally explained 98.52% of variations among data. The first and second components were named potential yield and stress susceptible respectively. Based on the results of BCMV tolerance indices assessment and biplot analysis WA8563-4, WA8563-2 and Cardinal were the genotypes that exhibited potential seed yield under contamination and noncontamination conditions.

Effect of Process Parameters on the Proximate Composition, Functional and Sensory Properties

Flour from Mucuna beans (Mucuna pruriens) were used in producing texturized meat analogue using a single screw extruder to monitor modifications on the proximate composition and the functional properties at high moisture level. Response surface methodology based on Box Behnken design at three levels of barrel temperature (110, 120, 130°C), screw speed (100,120,140rpm) and feed moisture (44, 47, 50%) were used in 17 runs. Regression models describing the effect of variables on the product responses were obtained. Descriptive profile analyses and consumer acceptability test were carried out on optimized flavoured extruded meat analogue. Responses were mostly affected by barrel temperature and moisture level and to a lesser extent by screw speed. Optimization results based on desirability concept indicated that a barrel temperature of 120.15°C, feed moisture of 47% and screw speed of 119.19 rpm would produce meat analogue of preferable proximate composition, functional and sensory properties which reveals consumers` likeness for the product.