3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach

This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances.

Target Tracking by Flying Drone with Fixed Camera

This paper presents the software conception of a quadrotor UAV, named SKYWATCHER, which is able to follow a target. This capacity can at a long turn time permit to follow another drone and combine their performance in order to military missions for example. From a low-cost architecture constructed by five students we implemented a software and added a camera to create a visual servoing. This project demonstrates the possibility to associate the technology of stabilization and the technology of visual enslavement.

Optimization Based Tuning of Autopilot Gains for a Fixed Wing UAV

Unmanned Aerial Vehicles (UAVs) have gained tremendous importance, in both Military and Civil, during first decade of this century. In a UAV, onboard computer (autopilot) autonomously controls the flight and navigation of the aircraft. Based on the aircraft role and flight envelope, basic to complex and sophisticated controllers are used to stabilize the aircraft flight parameters. These controllers constitute the autopilot system for UAVs. The autopilot systems, most commonly, provide lateral and longitudinal control through Proportional-Integral-Derivative (PID) controllers or Phase-lead or Lag Compensators. Various techniques are commonly used to ‘tune’ gains of these controllers. Some techniques used are, in-flight step-by-step tuning, software-in-loop or hardware-in-loop tuning methods. Subsequently, numerous in-flight tests are required to actually ‘fine-tune’ these gains. However, an optimization-based tuning of these PID controllers or compensators, as presented in this paper, can greatly minimize the requirement of in-flight ‘tuning’ and substantially reduce the risks and cost involved in flight-testing.

Optimal Design of Airfoil Platform Shapes with High Aspect Ratio Using Genetic Algorithm

Unmanned aerial vehicles (UAVs) performing their operations for a long time have been attracting much attention in military and civil aviation industries for the past decade. The applicable field of UAV is changing from the military purpose only to the civil one. Because of their low operation cost, high reliability and the necessity of various application areas, numerous development programs have been initiated around the world. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that are decided by airfoil shapes can be obtained.

Optimal Design of Airfoil with High Aspect Ratio in Unmanned Aerial Vehicles

Shape optimization of the airfoil with high aspect ratio of long endurance unmanned aerial vehicle (UAV) is performed by the multi-objective optimization technology coupled with computational fluid dynamics (CFD). For predicting the aerodynamic characteristics around the airfoil the high-fidelity Navier-Stokes solver is employed and SMOGA (Simple Multi-Objective Genetic Algorithm), which is developed by authors, is used for solving the multi-objective optimization problem. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that is decided by airfoil shapes can be obtained.

A Feasibility-study of a Micro- Communications Sonobuoy Deployable by UAV Robots

This paper describes a feasibility study that is included with the research, development and testing of a micro communications sonobuoy deployable by Maritime Fixed wing Unmanned Aerial Vehicles (M-UAV) and rotor wing Quad Copters which are both currently being developed by the University of Adelaide. The micro communications sonobuoy is developed to act as a seamless communication relay between an Autonomous Underwater Vehicle (AUV) and an above water human operator some distance away. Development of such a device would eliminate the requirement of physical communication tethers attached to submersible vehicles for control and data retrieval.

UAV Position Estimation Using Remote Radio Head With Adaptive Power Control

The adaptive power control of Code Division Multiple Access (CDMA) communications using Remote Radio Head (RRH) between multiple Unmanned Aerial Vehicles (UAVs) with a link-budget based Signal-to-Interference Ratio (SIR) estimate is applied to four inner loop power control algorithms. It is concluded that Base Station (BS) can calculate not only UAV distance using linearity between speed and Consecutive Transmit-Power-Control Ratio (CTR) of Adaptive Step-size Closed Loop Power Control (ASCLPC), Consecutive TPC Ratio Step-size Closed Loop Power Control (CS-CLPC), Fixed Step-size Power Control (FSPC), but also UAV position with Received Signal Strength Indicator (RSSI) ratio of RRHs.

Low Latency Routing Algorithm for Unmanned Aerial Vehicles Ad-Hoc Networks

In this paper, we proposed a new routing protocol for Unmanned Aerial Vehicles (UAVs) that equipped with directional antenna. We named this protocol Directional Optimized Link State Routing Protocol (DOLSR). This protocol is based on the well known protocol that is called Optimized Link State Routing Protocol (OLSR). We focused in our protocol on the multipoint relay (MPR) concept which is the most important feature of this protocol. We developed a heuristic that allows DOLSR protocol to minimize the number of the multipoint relays. With this new protocol the number of overhead packets will be reduced and the End-to-End delay of the network will also be minimized. We showed through simulation that our protocol outperformed Optimized Link State Routing Protocol, Dynamic Source Routing (DSR) protocol and Ad- Hoc On demand Distance Vector (AODV) routing protocol in reducing the End-to-End delay and enhancing the overall throughput. Our evaluation of the previous protocols was based on the OPNET network simulation tool.

Ground System Software for Unmanned Aerial Vehicles on Android Device

A Ground Control System (GCS), which controls Unmanned Aerial Vehicles (UAVs) and monitors their missionrelated data, is one of the major components of UAVs. In fact, some traditional GCSs were built on an expensive, complicated hardware infrastructure with workstations and PCs. In contrast, a GCS on a portable device – such as an Android phone or tablet – takes advantage of its light-weight hardware and the rich User Interface supported by the Android Operating System. We implemented that kind of GCS and called it Ground System Software (GSS) in this paper. In operation, our GSS communicates with UAVs or other GSS via TCP/IP connection to get mission-related data, visualizes it on the device-s screen, and saves the data in its own database. Our study showed that this kind of system will become a potential instrument in UAV-related systems and this kind of topic will appear in many research studies in the near future.

CQAR: Closed Quarter Aerial Robot Design for Reconnaissance, Surveillance and Target Acquisition Tasks in Urban Areas

This paper describes a prototype aircraft that can fly slowly, safely and transmit wireless video for tasks like reconnaissance, surveillance and target acquisition. The aircraft is designed to fly in closed quarters like forests, buildings, caves and tunnels which are often spacious but GPS reception is poor. Envisioned is that a small, safe and slow flying vehicle can assist in performing dull, dangerous and dirty tasks like disaster mitigation, search-and-rescue and structural damage assessment.