Distribution Centers Reliability Cost in Capacitated Facility Location Problem

Recently studies in area of supply chain network (SCN) have focused on the disruption issues in distribution systems. Also this paper extends the previous literature by providing a new biobjective model for cost minimization of designing a three echelon SCN across normal and failure scenarios with considering multi capacity option for manufacturers and distribution centers. Moreover, in order to solve the problem by means of LINGO software, novel model will be reformulated through a branch of LP-Metric method called Min-Max approach.

The Effect of IT Service Quality Attributes on Supply Chain Management and Performance

Nowadays, where most of the leading economies are service oriented and e-business is being widely used for their management, supply chain management has become one of the most studied and practiced fields. Quality has an important role on today-s business processes, so it is important to understand the impact of IT service quality on the performance of supply chains. This paper will start by analyzing the Supply Chain Operations Reference (SCOR) model and each of its five activities: Plan, Source, Make, Delivery, and Return. This article proposes a framework for analyzing Effect of IT Service Quality on Supply Chain Performance. Using the proposed framework, hypotheses are framed for the direct effect of IT service quality on Supply Chain Performance and its indirect effect through effective Supply Chain Management. The framework will be validated empirically based on the surveys of executives of various organizations and statistical analyses of the data collected.

A Zero-Cost Collar Option Applied to Materials Procurement Contracts to Reduce Price Fluctuation Risks in Construction

This study proposes a materials procurement contracts model to which the zero-cost collar option is applied for heading price fluctuation risks in construction.The material contract model based on the collar option that consists of the call option striking zone of the construction company(the buyer) following the materials price increase andthe put option striking zone of the material vendor(the supplier) following a materials price decrease. This study first determined the call option strike price Xc of the construction company by a simple approach: it uses the predicted profit at the project starting point and then determines the strike price of put option Xp that has an identical option value, which completes the zero-cost material contract.The analysis results indicate that the cost saving of the construction company increased as Xc decreased. This was because the critical level of the steel materials price increasewas set at a low level. However, as Xc decreased, Xpof a put option that had an identical option value gradually increased. Cost saving increased as Xc decreased. However, as Xp gradually increased, the risk of loss from a construction company increased as the steel materials price decreased. Meanwhile, cost saving did not occur for the construction company, because of volatility. This result originated in the zero-cost features of the two-way contract of the collar option. In the case of the regular one-way option, the transaction cost had to be subtracted from the cost saving. The transaction cost originated from an option value that fluctuated with the volatility. That is, the cost saving of the one-way option was affected by the volatility. Meanwhile, even though the collar option with zero transaction cost cut the connection between volatility and cost saving, there was a risk of exercising the put option.

An Empirical Analysis of the Board Composition Concerning Logistics Competencies

Empirical insights into the implementation of logistics competencies at the top management level are scarce. This paper addresses this issue with an explorative approach which is based on a dataset of 872 observations in the years 2000, 2004 and 2008 using quantitative content analysis from annual reports of the 500 publicly listed firms with the highest global research and development expenditures according to the British Department for Business Innovation and Skills. We find that logistics competencies are more pronounced in Asian companies than in their European or American counterparts. On an industrial level the results are quite mixed. Using partial point-biserial correlations we show that logistics competencies are positively related to financial performance.

Contextual Factors in the Decision Making of Industrialized Building System Technology

Currently, the Malaysian construction industry is focusing on transforming construction processes from conventional building methods to the Industrialized Building System (IBS). Still, research on the decision making of IBS technology adoption with the influence of contextual factors is scarce. The purpose of this paper is to explore how contextual factors influence the IBS decision making in building projects which is perceived by those involved in construction industry namely construction stakeholders and IBS supply chain members. Theoretical background, theoretical frameworks and literatures which identify possible contextual factors that influence decision making towards IBS technology adoption are presented. This paper also discusses the importance of contextual factors in IBS decision making, highlighting some possible crossover benefits and making some suggestions as to how these can be utilized. Conclusions are drawn and recommendations are made with respect to the perception of socio-economic, IBS policy and IBS technology associated with building projects.

Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based On Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focusses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Single and Multiple Sourcing in the Auto-Manufacturing Industry

This article outlines a hybrid method, incorporating multiple techniques into an evaluation process, in order to select competitive suppliers in a supply chain. It enables a purchaser to do single sourcing and multiple sourcing by calculating a combined supplier score, which accounts for both qualitative and quantitative factors that have impact on supply chain performance.

Identifying Key Success Factor For Supply Chain Management System in the Semiconductor Industry - A Focus Group Approach

Developing a supply chain management (SCM) system is costly, but important. However, because of its complicated nature, not many of such projects are considered successful. Few research publications directly relate to key success factors (KSFs) for implementing a SCM system. Motivated by the above, this research proposes a hierarchy of KSFs for SCM system implementation in the semiconductor industry by using a two-step approach. First, the literature review indicates the initial hierarchy. The second step includes a focus group approach to finalize the proposed KSF hierarchy by extracting valuable experiences from executives and managers that actively participated in a project, which successfully establish a seamless SCM integration between the world's largest semiconductor foundry manufacturing company and the world's largest assembly and testing company. Future project executives may refer the resulting KSF hierarchy as a checklist for SCM system implementation in semiconductor or related industries.

Green Product Design for Mobile Phones

Nowadays, manufacturers are facing great challenges with regard to the production of green products due to the emerging issue of hazardous substance management (HSM). In particular, environmental legislation pressures have yielded to increased risk, manufacturing complexity and green components demands. The green principles were expanded to many departments within organization, including supply chain. Green supply chain management (GSCM) was emerging in the last few years. This idea covers every stage in manufacturing from the first to the last stage of life cycle. From product lifecycle concept, the cycle starts at the design of a product. QFD is a customer-driven product development tool, considered as a structured management approach for efficiently translating customer needs into design requirements and parts deployment, as well as manufacturing plans and controls in order to achieve higher customer satisfaction. This paper develops an Eco- QFD to provide a framework for designing Eco-mobile phone by integrating the life cycle analysis LCA into QFD throughout the entire product development process.

Stochastic Mixed 0-1 Integer Programming Applied to International Transportation Problems under Uncertainty

Today-s business has inevitably been set in the global supply chain management environment. International transportation has never played such an important role in the global supply chain network, because movement of shipments from one country to another tends to be more frequent than ever before. This paper studies international transportation problems experienced by an international transportation company. Because of the limited fleet capacity, the transportation company has to hire additional trucks from two countries in advance. However, customer-s shipment information is uncertain, and decisions have to be made before accurate information can be obtained. This paper proposes a stochastic mixed 0-1 programming model to solve the international transportation problems under uncertain demand. A series of experiments demonstrate the effectiveness of the proposed stochastic model.

Particle Swarm Optimization Based Genetic Algorithm for Two-Stage Transportation Supply Chain

Supply chain consists of all stages involved, directly or indirectly, includes all functions involved in fulfilling a customer demand. In two stage transportation supply chain problem, transportation costs are of a significant proportion of final product costs. It is often crucial for successful decisions making approaches in two stage supply chain to explicit account for non-linear transportation costs. In this paper, deterministic demand and finite supply of products was considered. The optimized distribution level and the routing structure from the manufacturing plants to the distribution centres and to the end customers is determined using developed mathematical model and solved by proposed particle swarm optimization based genetic algorithm. Numerical analysis of the case study is carried out to validate the model.

The Advantages of Integration for Social Systems – Evidence from the Automobile Industry

The Japanese integrative approach to social systems can be observed in supply chain management as well as in the relationship between public and private sectors. Both the Lean Production System and the Developmental State Model are characterized by efforts towards the achievement of mutual goals, resulting in initiatives for capacity building which emphasize the system level. In Brazil, although organizations undertake efforts to build capabilities at the individual and organizational levels, the system level is being neglected. Fieldwork data confirmed the findings of other studies in terms of the lack of integration in supply chain management in the Brazilian automobile industry. Moreover, due to the absence of an active role of the Brazilian state in its relationship with the private sector, automakers are not fully exploiting the opportunities in the domestic and regional markets. For promoting a higher level of economic growth as well as to increase the degree of spill-over of technologies and techniques, a more integrative approach is needed.

DEA ANN Approach in Supplier Evaluation System

In Supply Chain Management (SCM), strengthening partnerships with suppliers is a significant factor for enhancing competitiveness. Hence, firms increasingly emphasize supplier evaluation processes. Supplier evaluation systems are basically developed in terms of criteria such as quality, cost, delivery, and flexibility. Because there are many variables to be analyzed, this process becomes hard to execute and needs expertise. On this account, this study aims to develop an expert system on supplier evaluation process by designing Artificial Neural Network (ANN) that is supported with Data Envelopment Analysis (DEA). The methods are applied on the data of 24 suppliers, which have longterm relationships with a medium sized company from German Iron and Steel Industry. The data of suppliers consists of variables such as material quality (MQ), discount of amount (DOA), discount of cash (DOC), payment term (PT), delivery time (DT) and annual revenue (AR). Meanwhile, the efficiency that is generated by using DEA is added to the supplier evaluation system in order to use them as system outputs.

An Analytical Framework for Multi-Site Supply Chain Planning Problems

As the gradual increase of the enterprise scale, the firms may possess many manufacturing plants located in different places geographically. This change will result in the multi-site production planning problems under the environment of multiple plants or production resources. Our research proposes the structural framework to analyze the multi-site planning problems. The analytical framework is composed of six elements: multi-site conceptual model, product structure (bill of manufacturing), production strategy, manufacturing capability and characteristics, production planning constraints, and key performance indicators. As well as the discussion of these six ingredients, we also review related literatures in this paper to match our analytical framework. Finally we take a real-world practical example of a TFT-LCD manufacturer in Taiwan to explain our proposed analytical framework for the multi-site production planning problems.

Supply Chain Management: After Business Process Re-Engineering

This paper is prepared to provide a review of how an automotive manufacturer, ISUZU HICOM Malaysia Co. Ltd. sustained the supply chain management after business process reengineering in 2007. One of the authors is currently undergoing industrial attachment and has spent almost 6 months researching in the production and operation management system of the company. This study was carried out as part of the tasks in the attachment program. The result shows that delivery lateness and outsourcing are the main barriers that affected productivity. From the gap analysis, the authors found that new business process operation had improved suppliers delivery performance.

The Use of Information for Inventory Decision in the Healthcare Industry

In this study, we explore the use of information for inventory decision in the healthcare organization (HO). We consider the scenario when the HO can make use of the information collected from some correlated products to enhance its inventory planning. Motivated by our real world observations that HOs adopt RFID and bar-coding system for information collection purpose, we examine the effectiveness of these systems for inventory planning with Bayesian information updating. We derive the optimal ordering decision and study the issue of Pareto improvement in the supply chain. Our analysis demonstrates that RFID system will outperform the bar-coding system when the RFID system installation cost and the tag cost reduce to a level that is comparable with that of the barcoding system. We also show how an appropriately set wholesale pricing contract can achieve Pareto improvement in the HO supply chain.