Analysis of a Mathematical Model for Dengue Disease in Pregnant Cases

Dengue fever is an important human arboviral disease. Outbreaks are now reported quite often from many parts of the world. The number of cases involving pregnant women and infant cases are increasing every year. The illness is often severe and complications may occur. Deaths often occur because of the difficulties in early diagnosis and in the improper management of the diseases. Dengue antibodies from pregnant women are passed on to infants and this protects the infants from dengue infections. Antibodies from the mother are transferred to the fetus when it is still in the womb. In this study, we formulate a mathematical model to describe the transmission of this disease in pregnant women. The model is formulated by dividing the human population into pregnant women and non-pregnant human (men and non-pregnant women). Each class is subdivided into susceptible (S), infectious (I) and recovered (R) subclasses. We apply standard dynamical analysis to our model. Conditions for the local stability of the equilibrium points are given. The numerical simulations are shown. The bifurcation diagrams of our model are discussed. The control of this disease in pregnant women is discussed in terms of the threshold conditions.

Defect Detection of Tiles Using 2D-Wavelet Transform and Statistical Features

In this article, a method has been offered to classify normal and defective tiles using wavelet transform and artificial neural networks. The proposed algorithm calculates max and min medians as well as the standard deviation and average of detail images obtained from wavelet filters, then comes by feature vectors and attempts to classify the given tile using a Perceptron neural network with a single hidden layer. In this study along with the proposal of using median of optimum points as the basic feature and its comparison with the rest of the statistical features in the wavelet field, the relational advantages of Haar wavelet is investigated. This method has been experimented on a number of various tile designs and in average, it has been valid for over 90% of the cases. Amongst the other advantages, high speed and low calculating load are prominent.

Multipurpose Three Dimensional Finite Element Procedure for Thermal Analysis in Pulsed Current Gas Tungsten Arc Welding of AZ 31B Magnesium Alloy Sheets

This paper presents the results of a study aimed at establishing the temperature distribution during the welding of magnesium alloy sheets by Pulsed Current Gas Tungsten Arc Welding (PCGTAW) and Constant Current Gas Tungsten Arc Welding (CCGTAW) processes. Pulsing of the GTAW welding current influences the dimensions and solidification rate of the fused zone, it also reduces the weld pool volume hence a narrower bead. In this investigation, the base material considered was 2mm thin AZ 31 B magnesium alloy, which is finding use in aircraft, automobile and high-speed train components. A finite element analysis was carried out using ANSYS, and the results of the FEA were compared with the experimental results. It is evident from this study that the finite element analysis using ANSYS can be effectively used to model PCGTAW process for finding temperature distribution.

Springback Property and Texture Distribution of Grained Pure Copper

To improve the material characteristics of single- and poly-crystals of pure copper, the respective relationships between crystallographic orientations and microstructures, and the bending and mechanical properties were examined. And texture distribution is also analyzed. A grain refinement procedure was performed to obtain a grained structure. Furthermore, some analytical results related to crystal direction maps, inverse pole figures, and textures were obtained from SEM-EBSD analyses. Results showed that these grained metallic materials have peculiar springback characteristics with various bending angles.

Buckling Optimization of Radially-Graded, Thin-Walled, Long Cylinders under External Pressure

This paper presents a generalized formulation for the problem of buckling optimization of anisotropic, radially graded, thin-walled, long cylinders subject to external hydrostatic pressure. The main structure to be analyzed is built of multi-angle fibrous laminated composite lay-ups having different volume fractions of the constituent materials within the individual plies. This yield to a piecewise grading of the material in the radial direction; that is the physical and mechanical properties of the composite material are allowed to vary radially. The objective function is measured by maximizing the critical buckling pressure while preserving the total structural mass at a constant value equals to that of a baseline reference design. In the selection of the significant optimization variables, the fiber volume fractions adjoin the standard design variables including fiber orientation angles and ply thicknesses. The mathematical formulation employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately as well as the inclusion of the coupling stiffness terms is presented. The proposed model deals with dimensionless quantities in order to be valid for thin shells having arbitrary thickness-to-radius ratios. The critical buckling pressure level curves augmented with the mass equality constraint are given for several types of cylinders showing the functional dependence of the constrained objective function on the selected design variables. It was shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.

A Study for Carbonation Degree on Concrete using a Phenolphthalein Indicator and Fourier-Transform Infrared Spectroscopy

A concrete structure is designed and constructed for its purpose of use, and is expected to maintain its function for the target durable years from when it was planned. Nevertheless, as time elapses the structure gradually deteriorates and then eventually degrades to the point where the structure cannot exert the function for which it was planned. The performance of concrete that is able to maintain the level of the performance required over the designed period of use as it has less deterioration caused by the elapse of time under the designed condition is referred to as Durability. There are a number of causes of durability degradation, but especially chloride damage, carbonation, freeze-thaw, etc are the main causes. In this study, carbonation, one of the main causes of deterioration of the durability of a concrete structure, was investigated via a microstructure analysis technique. The method for the measurement of carbonation was studied using the existing indicator method, and the method of measuring the progress of carbonation in a quantitative manner was simultaneously studied using a FT-IR (Fourier-Transform Infrared) Spectrometer along with the microstructure analysis technique.

Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids

The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.

Application of Load Transfer Technique for Distribution Power Flow Analysis

Installation of power compensation equipment in some cases places additional buses into the system. Therefore, a total number of power flow equations and voltage unknowns increase due to additional locations of installed devices. In this circumstance, power flow calculation is more complicated. It may result in a computational convergence problem. This paper presents a power flow calculation by using Newton-Raphson iterative method together with the proposed load transfer technique. This concept is to eliminate additional buses by transferring installed loads at the new buses to existing two adjacent buses. Thus, the total number of power flow equations is not changed. The overall computational speed is expectedly shorter than that of solving the problem without applying the load transfer technique. A 15-bus test system is employed for test to evaluate the effectiveness of the proposed load transfer technique. As a result, the total number of iteration required and execution time is significantly reduced.

Applications of Entropy Measures in Field of Queuing Theory

In the present communication, we have studied different variations in the entropy measures in the different states of queueing processes. In case of steady state queuing process, it has been shown that as the arrival rate increases, the uncertainty increases whereas in the case of non-steady birth-death process, it is shown that the uncertainty varies differently. In this pattern, it first increases and attains its maximum value and then with the passage of time, it decreases and attains its minimum value.

Molecular Characteristics of Phosphoric Acid Treated Soils

The expansive nature of soils containing high amounts of clay minerals can be altered through chemical stabilization, resulting in a material suitable for construction purposes. The primary objective of this investigation was to study the changes induced in the molecular structure of phosphoric acid stabilized bentonite and lateritic soil using Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) spectroscopy. Based on the obtained data, it was found that a surface alteration mechanism was the main reason responsible for the improvement of treated soils. Furthermore, the results indicated that the Al present in the octahedral layer of clay minerals were more amenable to chemical attacks and also partly responsible for the formation of new products.

Analysis and Remediation of Fecal Coliform Bacteria Pollution in Selected Surface Water Bodies of Enugu State of Nigeria

The assessment of surface waters in Enugu metropolis for fecal coliform bacteria was undertaken. Enugu urban was divided into three areas (A1, A2 and A3), and fecal coliform bacteria analysed in the surface waters found in these areas for four years (2005-2008). The plate count method was used for the analyses. Data generated were subjected to statistical tests involving; Normality test, Homogeneity of variance test, correlation test, and tolerance limit test. The influence of seasonality and pollution trends were investigated using time series plots. Results from the tolerance limit test at 95% coverage with 95% confidence, and with respect to EU maximum permissible concentration show that the three areas suffer from fecal coliform pollution. To this end, remediation procedure involving the use of saw-dust extracts from three woods namely; Chlorophora-Excelsa (C-Excelsa),Khayan-Senegalensis,(CSenegalensis) and Erythrophylum-Ivorensis (E-Ivorensis) in controlling the coliforms was studied. Results show that mixture of the acetone extracts of the woods show the most effective antibacterial inhibitory activities (26.00mm zone of inhibition) against E-coli. Methanol extract mixture of the three woods gave best inhibitory activity (26.00mm zone of inhibition) against S-areus, and 25.00mm zones of inhibition against E-Aerogenes. The aqueous extracts mixture gave acceptable zones of inhibitions against the three bacteria organisms.

A Web Service Platform for Support Multiple Programming Language to Access Biomedical Image Databases

Images are important in disease research, education, and clinical medicine. This paper presents a Web Service Platform (WSP) for support multiple programming languages to access image from biomedical databases. The main function WSP is to allow web users access image from biomedical databases. The WSP will receive web user-s queries. After that, it will send to Querying Server (QS) and the QS will search and retrieve data from biomedical databases. Finally, the information will display to the web users. Simple application is developed and tested for experiment purpose. Result from experiment indicated WSP can be used in biomedical environment.

Safety Compliance of Substation Earthing Design

As new challenges emerge in power electrical workplace safety, it is the responsibility of the systems designer to seek out new approaches and solutions that address them. Design decisions made today will impact cost, safety and serviceability of the installed systems for 40 or 50 years during the useful life for the owner. Studies have shown that this cost is an order of magnitude of 7 to 10 times the installed cost of the power distribution equipment. This paper reviews some aspects of earthing system design in power substation surrounded by residential houses. The electrical potential rise and split factors are discussed and a few recommendations are provided to achieve a safety voltage in the area beyond the boundary of the substation.

An Intelligent Approach of Rough Set in Knowledge Discovery Databases

Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.

Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications

Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.

Spatial Mapping of Dengue Incidence: A Case Study in Hulu Langat District, Selangor, Malaysia

Dengue is a mosquito-borne infection that has peaked to an alarming rate in recent decades. It can be found in tropical and sub-tropical climate. In Malaysia, dengue has been declared as one of the national health threat to the public. This study aimed to map the spatial distributions of dengue cases in the district of Hulu Langat, Selangor via a combination of Geographic Information System (GIS) and spatial statistic tools. Data related to dengue was gathered from the various government health agencies. The location of dengue cases was geocoded using a handheld GPS Juno SB Trimble. A total of 197 dengue cases occurring in 2003 were used in this study. Those data then was aggregated into sub-district level and then converted into GIS format. The study also used population or demographic data as well as the boundary of Hulu Langat. To assess the spatial distribution of dengue cases three spatial statistics method (Moran-s I, average nearest neighborhood (ANN) and kernel density estimation) were applied together with spatial analysis in the GIS environment. Those three indices were used to analyze the spatial distribution and average distance of dengue incidence and to locate the hot spot of dengue cases. The results indicated that the dengue cases was clustered (p < 0.01) when analyze using Moran-s I with z scores 5.03. The results from ANN analysis showed that the average nearest neighbor ratio is less than 1 which is 0.518755 (p < 0.0001). From this result, we can expect the dengue cases pattern in Hulu Langat district is exhibiting a cluster pattern. The z-score for dengue incidence within the district is -13.0525 (p < 0.0001). It was also found that the significant spatial autocorrelation of dengue incidences occurs at an average distance of 380.81 meters (p < 0.0001). Several locations especially residential area also had been identified as the hot spots of dengue cases in the district.

Modeling of Catalyst Deactivation in Catalytic Wet Air Oxidation of Phenol in Fixed Bed Three-Phase Reactor

Modeling and simulation of fixed bed three-phase catalytic reactors are considered for wet air catalytic oxidation of phenol to perform a comparative numerical analysis between tricklebed and packed-bubble column reactors. The modeling involves material balances both for the catalyst particle as well as for different fluid phases. Catalyst deactivation is also considered in a transient reactor model to investigate the effects of various parameters including reactor temperature on catalyst deactivation. The simulation results indicated that packed-bubble columns were slightly superior in performance than trickle beds. It was also found that reaction temperature was the most effective parameter in catalyst deactivation.

A Materialized View Approach to Support Aggregation Operations over Long Periods in Sensor Networks

The increasing interest on processing data created by sensor networks has evolved into approaches to implement sensor networks as databases. The aggregation operator, which calculates a value from a large group of data such as computing averages or sums, etc. is an essential function that needs to be provided when implementing such sensor network databases. This work proposes to add the DURING clause into TinySQL to calculate values during a specific long period and suggests a way to implement the aggregation service in sensor networks by applying materialized view and incremental view maintenance techniques that is used in data warehouses. In sensor networks, data values are passed from child nodes to parent nodes and an aggregation value is computed at the root node. As such root nodes need to be memory efficient and low powered, it becomes a problem to recompute aggregate values from all past and current data. Therefore, applying incremental view maintenance techniques can reduce the memory consumption and support fast computation of aggregate values.

White Blood Cells Identification and Counting from Microscopic Blood Image

The counting and analysis of blood cells allows the evaluation and diagnosis of a vast number of diseases. In particular, the analysis of white blood cells (WBCs) is a topic of great interest to hematologists. Nowadays the morphological analysis of blood cells is performed manually by skilled operators. This involves numerous drawbacks, such as slowness of the analysis and a nonstandard accuracy, dependent on the operator skills. In literature there are only few examples of automated systems in order to analyze the white blood cells, most of which only partial. This paper presents a complete and fully automatic method for white blood cells identification from microscopic images. The proposed method firstly individuates white blood cells from which, subsequently, nucleus and cytoplasm are extracted. The whole work has been developed using MATLAB environment, in particular the Image Processing Toolbox.

An Expert System for Car Failure Diagnosis

Car failure detection is a complicated process and requires high level of expertise. Any attempt of developing an expert system dealing with car failure detection has to overcome various difficulties. This paper describes a proposed knowledge-based system for car failure detection. The paper explains the need for an expert system and the some issues on developing knowledge-based systems, the car failure detection process and the difficulties involved in developing the system. The system structure and its components and their functions are described. The system has about 150 rules for different types of failures and causes. It can detect over 100 types of failures. The system has been tested and gave promising results.