Dynamics and Feedback Control for a New Hyperchaotic System

In this paper, stability and Hopf bifurcation analysis of a novel hyperchaotic system are investigated. Four feedback control strategies, the linear feedback control method, enhancing feedback control method, speed feedback control method and delayed feedback control method, are used to control the hyperchaotic attractor to unstable equilibrium. Moreover numerical simulations are given to verify the theoretical results.

Microalgal Lipid Production by Microalgae Chlorella sp. KKU-S2

The objective of this work is to produce heterotrophic microalgal lipid in flask-batch fermentation. Chlorella sp. KKU-S2 supported maximum values of 0.374 g/L/d, 0.478 g lipid/g cells, and 0.112 g/L/d for volumetric lipid production rate, and specific yield of lipid, and specific rate of lipid production, respectively when culture was performed on BG-11 medium supplemented with 50g/L glucose. Among the carbon sources tested, maximum cell yield coefficient (YX/S, g/L), maximum specific yield of lipid (YP/X, g lipid/g cells) and volumetric lipid production rate (QP, g/L/d) were found of 0.728, 0.237, and 0.619, respectively, using sugarcane molasses as carbon source. The main components of fatty acid from extracted lipid were palmitic acid, stearic acid, oleic acid and linoleic acid which similar to vegetable oils and suitable for biodiesel production.

Utilization of Glycerol Derived from Jatropha-s Biodiesel Production as a Cement Grinding Aid

Biodiesel production results in glycerol production as the main by-product in biodiesel industry.One of the utilizations of glycerol obtained from biodiesel production is as a cement grinding aid (CGA). Results showed that crude glycerol content was 40.19% whereas pure glycerol content was 82.15%. BSS value of the cement with CGA supplementation was higher than that of nonsupplemented cement (blank) indicating that CGA-supplemented cement had higher fineness than the non-supplemented one. It was also found that pure glycerol 95% and TEA 5% at 80ºC was the optimum CGA used to result in finest cement with BSS value of 4.836 cm2/g. Residue test showed that the smallest percent residue value (0.11%) was obtained in cement with supplementation of pure glycerol 95% and TEA 5%. Results of residue test confirmed those of BSS test showing that cement with supplementation of pure glycerol 95% and TEA 5% had the finest particle size.

Investigation of Heat Loss in Ethanol-Water Distillation Column with Direct Vapour Recompression Heat Pump

Vapour recompression system has been used to enhance reduction in energy consumption and improvement in energy effectiveness of distillation columns. However, the effects of certain parameters have not been taken into consideration. One of such parameters is the column heat loss which has either been assumed to be a certain percent of reboiler heat transfer or negligible. The purpose of this study was to evaluate the heat loss from an ethanol-water vapour recompression distillation column with pressure increase across the compressor (VRCAS) and compare the results obtained and its effect on some parameters in similar system (VRCCS) where the column heat loss has been assumed or neglected. Results show that the heat loss evaluated was higher when compared with that obtained for the column VRCCS. The results also showed that increase in heat loss could have significant effect on the total energy consumption, reboiler heat transfer, the number of trays and energy effectiveness of the column.

Designing Transcutaneous Inductive Powering Links for Implanted Micro-System Device

This paper presented a proposed design for transcutaneous inductive powering links. The design used to transfer power and data to the implanted devices such as implanted Microsystems to stimulate and monitoring the nerves and muscles. The system operated with low band frequency 13.56 MHZ according to industrial- scientific – medical (ISM) band to avoid the tissue heating. For external part, the modulation index is 13 % and the modulation rate 7.3% with data rate 1 Mbit/s assuming Tbit=1us. The system has been designed using 0.35-μm fabricated CMOS technology. The mathematical model is given and the design is simulated using OrCAD P Spice 16.2 software tool and for real-time simulation the electronic workbench MULISIM 11 has been used. The novel circular plane (pancake) coils was simulated using ANSOFT- HFss software.

Effect of Magnetic Field on the Biological Clock through the Radical Pair Mechanism

There is an ongoing controversy in the literature related to the biological effects of weak, low frequency electromagnetic fields. The physical arguments and interpretation of the experimental evidence are inconsistent, where some physical arguments and experimental demonstrations tend to reject the likelihood of any effect of the fields at extremely low level. The problem arises of explaining, how the low-energy influences of weak magnetic fields can compete with the thermal and electrical noise of cells at normal temperature using the theoretical studies. The magnetoreception in animals involve radical pair mechanism. The same mechanism has been shown to be involved in the circadian rhythm synchronization in mammals. These reactions can be influenced by the weak magnetic fields. Hence, it is postulated the biological clock can be affected by weak magnetic fields and these disruptions to the rhythm can cause adverse biological effects. In this paper, likelihood of altering the biological clock via the radical pair mechanism is analyzed to simplify these studies of controversy.

Design of the Large Dimension Cold Shield Cooled by G-M Cryocooler

The design of methods of the 20 K large dimension cold shield used for infrared radiation demarcating in space environment simulation test were introduced in this paper. The cold shield were cooled by five G-M cryocoolers , and the dimension of the cold shield is the largest in our country.Cold shield installation and distribution and compensator for contraction on cooling were introduced detailedly. The temperature distribution and cool-down time of cold shield surface were also calculated and analysed in this paper. The design of cold shield resolves the difficulty of compensator for contraction on cooling successfully. Test results show that the actual technical performance indicators of cold shield met and exceeded the design requirements.

Globally Convergent Edge-preserving Reconstruction with Contour-line Smoothing

The standard approach to image reconstruction is to stabilize the problem by including an edge-preserving roughness penalty in addition to faithfulness to the data. However, this methodology produces noisy object boundaries and creates a staircase effect. The existing attempts to favor the formation of smooth contour lines take the edge field explicitly into account; they either are computationally expensive or produce disappointing results. In this paper, we propose to incorporate the smoothness of the edge field in an implicit way by means of an additional penalty term defined in the wavelet domain. We also derive an efficient half-quadratic algorithm to solve the resulting optimization problem, including the case when the data fidelity term is non-quadratic and the cost function is nonconvex. Numerical experiments show that our technique preserves edge sharpness while smoothing contour lines; it produces visually pleasing reconstructions which are quantitatively better than those obtained without wavelet-domain constraints.

Global Existence of Periodic Solutions in a Delayed Tri–neuron Network

In this paper, a tri–neuron network model with time delay is investigated. By using the Bendixson-s criterion for high– dimensional ordinary differential equations and global Hopf bifurcation theory for functional differential equations, sufficient conditions for existence of periodic solutions when the time delay is sufficiently large are established.

Viscosity of Vegetable Oils and Biodiesel and Energy Generation

The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.

Adaptive Transient and CW RF Interference Mitigation in HF OTH Radar: Experimental Results

We introduce an adaptive technique for the joint mitigation of transients and continuous-wave radio-frequency co-channel interference (CW RFI) in high-frequency (HF) over-the-horizon radars (OTHRs). The performance of this technique is illustrated using data from an operational surface-wave radar (SECAR) and from recent experimental trials with sky-wave (SW) and sky-wave–line-of-sight (SKYLOS) HF OTHRs.

Tissue Composition and Muscularity of Lamb Legs Fed with Sunflower Seeds and Vitamin E

The purpose of this study was to evaluate the tissue composition and carcass muscularity of 32 legs of Ile de France lambs fed with diets containing sunflower seeds and vitamin E, with mean body weight of 15 kg, lodged in individual pens at 15 kg and slaughtered at 32 kg of body weight. The treatments influenced (P0,05) by the treatments. The interaction of the sunflower and vitamin E was positive for bone total weights and intermuscular fat.

Creativity and Economic Development

The objective of this paper is to construct a creativity composite index designed to capture the growing role of creativity in driving economic and social development for the 27 European Union countries. The paper proposes a new approach for the measurement of EU-27 creative potential and for determining its capacity to attract and develop creative human capital. We apply a modified version of the 3T model developed by Richard Florida and Irene Tinagli for constructing a Euro-Creativity Index. The resulting indexes establish a quantitative base for policy makers, supporting their efforts to determine the contribution of creativity to economic development.

Periodic Oscillations in a Delay Population Model

In this paper, a nonlinear delay population model is investigated. Choosing the delay as a bifurcation parameter, we demonstrate that Hopf bifurcation will occur when the delay exceeds a critical value. Global existence of bifurcating periodic solutions is established. Numerical simulations supporting the theoretical findings are included.

Analysis of a Mathematical Model for Dengue Disease in Pregnant Cases

Dengue fever is an important human arboviral disease. Outbreaks are now reported quite often from many parts of the world. The number of cases involving pregnant women and infant cases are increasing every year. The illness is often severe and complications may occur. Deaths often occur because of the difficulties in early diagnosis and in the improper management of the diseases. Dengue antibodies from pregnant women are passed on to infants and this protects the infants from dengue infections. Antibodies from the mother are transferred to the fetus when it is still in the womb. In this study, we formulate a mathematical model to describe the transmission of this disease in pregnant women. The model is formulated by dividing the human population into pregnant women and non-pregnant human (men and non-pregnant women). Each class is subdivided into susceptible (S), infectious (I) and recovered (R) subclasses. We apply standard dynamical analysis to our model. Conditions for the local stability of the equilibrium points are given. The numerical simulations are shown. The bifurcation diagrams of our model are discussed. The control of this disease in pregnant women is discussed in terms of the threshold conditions.

2Taiwan Public Corporation's Participation in the Mechanism of Payment for Environmental Services

The Taiwan government has started to promote the “Plain Landscape Afforestation and Greening Program" since 2002. A key task of the program was the payment for environmental services (PES), entitled the “Plain Landscape Afforestation Policy" (PLAP), which was certificated by the Executive Yuan on August 31, 2001 and enacted on January 1, 2002. According to the policy, it is estimated that the total area of afforestation will be 25,100 hectares by December 31, 2007. Until the end of 2007, the policy had been enacted for six years in total and the actual area of afforestation was 8,919.18 hectares. Among them, Taiwan Sugar Corporation (TSC) was accounted for 7,960 hectares (with 2,450.83 hectares as public service area) which occupied 86.22% of the total afforestation area; the private farmland promoted by local governments was accounted for 869.18 hectares which occupied 9.75% of the total afforestation area. Based on the above, we observe that most of the afforestation area in this policy is executed by TSC, and the achievement ratio by TSC is better than by others. It implies that the success of the PLAP is seriously related to the execution of TSC. The objective of this study is to analyze the relevant policy planning of TSC-s participation in the PLAP, suggest complementary measures, and draw up effective adjustment mechanisms, so as to improve the effectiveness of executing the policy. Our main conclusions and suggestions are summarized as follows: 1. The main reason for TSC-s participation in the PLAP is based on their passive cooperation with the central government or company policy. Prior to TSC-s participation in the PLAP, their lands were mainly used for growing sugarcane. 2. The main factors of TSC-s consideration on the selection of tree species are based on the suitability of land and species. The largest proportion of tree species is allocated to economic forests, and the lack of technical instruction was the main problem during afforestation. Moreover, the method of improving TSC-s future development in leisure agriculture and landscape business becomes a key topic. 3. TSC has developed short and long-term plans on participating in the PLAP for the future. However, there is no great willingness or incentive on budgeting for such detailed planning. 4. Most people from TSC interviewed consider the requirements on PLAP unreasonable. Among them, an unreasonable requirement on the number of trees accounted for the greatest proportion; furthermore, most interviewees suggested that the government should continue to provide incentives even after 20 years. 5. Since the government shares the same goals as TSC, there should be sufficient cooperation and communication that support the technical instruction and reduction of afforestation cost, which will also help to improve effectiveness of the policy.

Microbiological and Physicochemical Studies of Wetland Soils in Eket, Nigeria

The microbiological and physicochemical characteristics of wetland soils in Eket Local Government Area were studied between May 2001 and June 2003. Total heterotrophic bacterial counts (THBC), total fungal counts (TFC), and total actinomycetes counts (TAC) were determined from soil samples taken from four locations at two depths in the wet and dry seasons. Microbial isolates were characterized and identified. Particle size and chemical parameters were also determined using standard methods. THBC ranged from 5.2 (+0.17) x106 to 1.7 (+0.18) x107 cfu/g and from 2.4 (+0.02) x106 to 1.4 (+0.04) x107cfu/g in the wet and dry seasons, respectively. TFC ranged from 1.8 (+0.03) x106 to 6.6 (+ 0.18) x106 cfu/g and from 1.0 (+0.04) x106 to 4.2 (+ 0.01) x106 cfu/g in the wet and dry seasons, respectively .TAC ranged from 1.2 (+0.53) x106 to 6.0 (+0.05) x106 cfu/g and from 0.6 (+0.01) x106 to 3.2 (+ 0.12) x106 cfu/g in the wet and dry season, respectively. Acinetobacter, Alcaligenes, Arthrobacter, Bacillus, Beijerinckja, Enterobacter, Micrococcus, Flavobacterium, Serratia, Enterococcus, and Pseudomonas species were predominant bacteria while Aspergillus, Fusarium, Mucor, Penicillium, and Rhizopus were the dominant fungal genera isolated. Streptomyces and Norcadia were the actinomycetes genera isolated. The particle size analysis showed high sand fraction but low silt and clay. The pH and % organic matter were generally acidic and low, respectively at all locations. Calcium dominated the exchangeable bases with low electrical conductivity and micronutrients. These results provide the baseline data of Eket wetland soils for its management for sustainable agriculture.

Hopf Bifurcation Analysis for a Delayed Predator–prey System with Stage Structure

In this paper, a delayed predator–prey system with stage structure is investigated. Sufficient conditions for the system to have multiple periodic solutions are obtained when the delay is sufficiently large by applying Bendixson-s criterion. Further, some numerical examples are given.

Novel PES Membrane Reinforced by Nano-WS2 for Enhanced Fouling Resistance

Application of nanoparticles as additives in membrane synthesis for improving the resistance of membranes against fouling has triggered recent interest in new membrane types. However, most nanoparticle-enhanced membranes suffer from the tradeoff between permeability and selectivity. In this study, nano-WS2 was explored as the additive in membrane synthesis by non-solvent induced phase separation. Blended PES-WS2 flat-sheet membranes with the incorporation of ultra-low concentrations of nanoparticles (from 0.025 to 0.25%, WS2/PES ratio) were manufactured and investigated in terms of permeability, fouling resistance and solute rejection. Remarkably, a significant enhancement in the permeability was observed as a result of the incorporation of ultra-low fractions of nano-WS2 to the membrane structure. Optimal permeability values were obtained for modified membranes with 0.10% nanoparticle/polymer concentration ratios. Furthermore, fouling resistance and solute rejection were significantly improved by the incorporation of nanoparticles into the membrane matrix. Specifically, fouling resistance of modified membrane can increase by around 50%.

Transmission Model for Plasmodium Vivax Malaria: Conditions for Bifurcation

Plasmodium vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax infection can suffer relapses of the disease. This is due the parasite being able to remain dormant in the liver of the patients where it is able to re-infect the patient after a passage of time. During this stage, the patient is classified as being in the dormant class. The model to describe the transmission of P. vivax malaria consists of a human population divided into four classes, the susceptible, the infected, the dormant and the recovered. The effect of a time delay on the transmission of this disease is studied. The time delay is the period in which the P. vivax parasite develops inside the mosquito (vector) before the vector becomes infectious (i.e., pass on the infection). We analyze our model by using standard dynamic modeling method. Two stable equilibrium states, a disease free state E0 and an endemic state E1, are found to be possible. It is found that the E0 state is stable when a newly defined basic reproduction number G is less than one. If G is greater than one the endemic state E1 is stable. The conditions for the endemic equilibrium state E1 to be a stable spiral node are established. For realistic values of the parameters in the model, it is found that solutions in phase space are trajectories spiraling into the endemic state. It is shown that the limit cycle and chaotic behaviors can only be achieved with unrealistic parameter values.