Effect of Magnetic Field on the Biological Clock through the Radical Pair Mechanism

There is an ongoing controversy in the literature related to the biological effects of weak, low frequency electromagnetic fields. The physical arguments and interpretation of the experimental evidence are inconsistent, where some physical arguments and experimental demonstrations tend to reject the likelihood of any effect of the fields at extremely low level. The problem arises of explaining, how the low-energy influences of weak magnetic fields can compete with the thermal and electrical noise of cells at normal temperature using the theoretical studies. The magnetoreception in animals involve radical pair mechanism. The same mechanism has been shown to be involved in the circadian rhythm synchronization in mammals. These reactions can be influenced by the weak magnetic fields. Hence, it is postulated the biological clock can be affected by weak magnetic fields and these disruptions to the rhythm can cause adverse biological effects. In this paper, likelihood of altering the biological clock via the radical pair mechanism is analyzed to simplify these studies of controversy.




References:
[1] N. A. Belova, and V. V. Lednev, "Dependence of the gravitropic response
in flax stem segments on the frequency and amplitude of a weak combined
magnetic field", Biophysics, vol. 45, pp. 1108-1111, 2000.
[2] V. V. Lednev, "Possible mechanism for the influence of weak magnetic
fields on biological systems", Bioelectromagnetics, vol. 12, pp. 71-75,
1991.
[3] M. N. Halgamuge, C. D. Abeyrathne and P. Mendis, "Effect of Cyclotron
Resonance Frequencies in Particles Due to AC and DC Electromagnetic
Fields", World Academy of Science, Engineering and Technology, vol. 52,
pp 416-419, 2009.
[4] R. K. Adair, "Constraints on biological effects of weak extremely
low frequency electromagnetic fields", Physical Review A, vol. 43, pp.
1039-1048, 1991.
[5] M. N. Halgamuge, B. R. R. Persson, L. G. Salford, P. Mendis
and J. L. Eberhardt, "Comparison between Two Models for Interactions
between Electric and Magnetic Fields and Proteins in Cell Membranes",
Environmental Engineering Science, vol 26, no. 10, pp. 1473-1480, 2009.
[6] R. J. Gegear, A. Casselman, S. Waddell, and S. M. Reppert, "Cryptochrome
mediates light-dependent magnetosensitivity in Drosophila",
Nature, vol. 454, pp. 1014-1018, 2008.
[7] W. Wiltschko, and R. Wiltschko, "Magnetoreception in birds: two receptors
for two different tasks", Journal of Ornithology, vol. 148, pp.
S61-S76, 2007.
[8] K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell
et al., "Chemical compass model of avian magnetoreception", Nature,
vol. 453, 2008.
[9] K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev, and A. L. Buchachenko,
"Spin polarization and magnetic effects in radical reactions", vol. 22,
Hungary: Elsevier Science Publishers, 1984.
[10] M. Ahmad, P. Galland, T. Ritz, R. Wiltschko, and W. Wiltschko, "Magnetic
intensity affects cryptochrome-dependent responses in Arabidopsis
thaliana", Planta, vol. 225, pp. 615-624, 2007.
[11] T. Yoshii, M. Ahmad, and C. Helfrich-Forster, "Cryptochrome Mediates
Light-Dependent Magnetosensitivity of Drosophila-s Circadian Clock",
PLoS Biology, vol. 7, no. 4, pp. 0813-0819, 2009.
[12] N. Mostafaie, E. K. llay, E. Sauerzapf, E. Bonner, S. Kriwanek,
H. S. Cross, et al., "Correlated Downregulation of Estrogen Receptor
Beta and the Circadian Clock Gene Per1 in Human Colorectal Cancer",
Molecular Carcinogenesis, vol. 48, pp. 642-647, 2009.
[13] D. Velissaris, V. Karamouzos, P. Polychronopoulos, and M. Karanikolas,
"Chronotypology and melatonin alterations in minimal hepatic encephalopathy",
Journal of Circadian Rhythms, vol. 7, pp. 6, 2009.
[14] O. Hiwaki, "Influence of 50 Hz magnetic fields on circadian rhythm
of the suprachiasmatic nucleus activity", Paper presented at the 20th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, 1998.
[15] T. Elvitigala, J. Stckel, B. K. Ghosh, and H. B. Pakrasi, "Effect of
continuous light on diurnal rhythms in Cyanothece sp. ATCC 51142".
BMC Genomics, vol. 10, pp. 226, 2009.
[16] H. Shimada, K. Numazawa, T. Sasaki, N. Kato, and T. Ebisawa,
"Introduction of tau Mutation into Cultured Rat1-R12 Cells by Gene
Targeting, Using Recombinant Adeno-Associated Virus Vector". Cell Mol
Neurobiol, 29, 699-705.
[17] E. Rieper, E. Gauger, J. J. L. Morton, S. C. Benjamin, and V. Vedral,
"Quantum coherence and entanglement in the avian compass", 2009.
[18] J. Aguzzi, P. Puig, and J. B. Company, "Hydrodynamic, non-photic
modulation of biorhythms in the Norway lobster Nephrops norvegicus
(L.)", Deep-Sea Research I, vol. 56, pp. 366-373, 2009.
[19] S. Liu, Y. Cai, R. B. Sothern, Y. Guan, and P. Chan, "Chronobiological
analysis of circadian patterns in transcription of seven key clock genes
in six peripheral tissues in mice", Chronobiology International, vol. 24,
no. 5, pp. 793-820, 2007.
[20] F. Weber, "Remodeling the clock: coactivators and signal transduction
in the circadian clockworks", Naturwissenschaften, vol. 96, pp. 321-337,
2009.
[21] M. Yamato, N. Ishida, H. Iwatani, M. Yamato, H. Rakugi, and T. Ito,
"Kid-1 participates in regulating ERK phosphorylation as a part of the
circadian clock output in rat kidney", Journal of Receptors and Signal
Transduction, vol. 29, no. 2, pp. 94-99, 2009.
[22] A. Mehra, C. I. Hong, M. Shi, J. J. Loros, J. C. Dunlap, and P. Ruoff,
"Circadian Rhythmicity by Autocatalysis", PLoS Computational Biology,
2(7), 0816-0823.
[23] T. M. Fitzgerald, and P. D. Taylor, "Migratory orientation of juvenile
yellow-rumped warblers (Dendroica coronata) following stopover:
sources of variation and the importance of geographic origins", Behav
Ecol Sociobiol, vol. 62, pp. 1499-1508, 2008.
[24] W. Wiltschko, and R. Wiltschko, "Magnetic Compass of European
Robins", Science, vol. 176, pp. 62-64, 2009.
[25] P. Galland, A. Pazur, "Magnetoreception in plants", Journal of Plant
Research, vol. 118, no. 6, pp. 371-389, 2005.
[26] T. Ritz, P. Thalau, J. B. Phillips, R. Wiltschko, and W. Wiltschko,
"Resonance effects indicate a radical-pair mechanism for avian magnetic
compass", Nature, vol. 429, 2004.
[27] C. B. Anea, M. Zhang, D. W. Stepp, G. B. Simkins, G. Reed,
D. J. Fulton, et al, "Vascular Disease in Mice With a Dysfunctional
Circadian Clock", Journal of the American Heart Association, vol. 119,
pp. 1510-1517, 2009.
[28] H. J.Werner, Z. Schulten, and K. Schulten, "Theory of the magnetic field
modulated geminate recombination of radical ion pairs in polar solvents
: Application to the pyrene-N,N-dimethylaniline system", The Journal of
Chemical Physics, vol. 67, no. 2, pp. 646-663, 1977.
[29] K. Schulten, "Biological effects of static and extremely low frequency
magnetic fields", BGA Schriften, vol. 86, no. 3, pp. 133-140, 1986.
[30] T. Miura, K. Maeda, and T. Arai, "The Spin Mixing Process of a Radical
Pair in Low Magnetic Field Observed by Transient Absorption Detected
Nanosecond Pulsed Magnetic Field Effect", J. Phys. Chem. A, vol. 110,
pp. 4151-4156, 2006.
[31] C. R. Timmel, and K. B. Henbest, "A Study of Spin Chemistry in Weak
Magnetic Fields", The Royal Society, vol. 362, pp. 2573-2589, 2004.
[32] M. B. Plenio, and S. F. Huelga, "Dephasing-assisted transport: quantum
networks and biomolecules", New Journal of Physics, vol. 10, 2008.
[33] K. Wang, and T. Ritz, "Zeeman resonances for radical-pair reactions in
weak static magnetic fields", Molecular Physics, vol. 104, pp. 1649-1658,
2006.
[34] S. Engstrom, "Magnetic field effects on free radical reactions in biology",
In: Taylor and Francis Group, LLC, 2006.
[35] I. R. Gould, N. J. Turro, and M. B. Zimmt, "Magnetic field and magnetic
isotope effects on the products of organic reactions", In V. Gold and D.
Bethell (Eds.), Advances In Physical Organic Chemistry (Vol. 20, pp. 1
- 51). London: Academic Press Inc Ltd, 1984.
[36] T. Ritz, S. Adem, and K. Schulten, "A Model for Photoreceptor-Based
Magnetoreception in Birds", Biophysical Journal, vol. 78, pp. 707-718,
2000.
[37] K. B. Henbes, K. Maeda, P. J. Hore, M. Joshi, A. Bacher, R. Bittl, et
al, "Magnetic-field effect on the photoactivation reaction of Escherichia
coli DNA photolyase", Proceedings of the National Academy of Sciences,
vol. 105, no. 38, pp. 14395-14399, 2008.
[38] I. A. Solovyov, and W. Greiner, "Theoretical Analysis of an Iron
Mineral-Based Magnetoreceptor Model in Birds", Biophysical Journal,
vol. 93, pp. 1493-1509, 2007.
[39] C. Eichwald, and J. Walleczek, "Model for magnetic field effects on
radical pair recombination in enzyme kinetics", Biophysical Journal, vol.
71, pp. 623-631, 1996.
[40] C. Eichwald, and J. Walleczek, "Magnetic field perturbations as a tool
for controlling enzyme-regulated and oscillatory biochemical reactions",
Biophysical Chemistry, vol. 74, pp. 209-224, 1998.
[41] R. K. Adair, "Effects of very weak magnetic fields on radical pair
reformation", Bioelectromagnetics, vol. 20, pp. 255-263, 1999.
[42] M. Zmyslony, E. Rajkowska, P. Mamrot, P. Politanski, & J. Jajte, "The
effect of weak 50 Hz magnetic fields on the number of free oxygen
radicals in rat lymphocytes in vitro", Bioelectromagnetics, vol. 25, pp.
607-612, 2004.
[43] F. Regoli, S. Gorbi, N. Machella, S. Tedesco, M. Benedetti, R. Bocchetti,
et al, "Pro-oxidant effects of extremely low frequency electromagnetic
fields in the land snail Helix aspersa", Free Radical Biology & Medicine,
vol. 39, pp. 1620-1628, 2005.
[44] J. D. MacArthur, "Cell phones and the brain The Townsend Letter for
Doctors and Patients", pp. 1-13, 2002.