Efficient STAKCERT KDD Processes in Worm Detection

This paper presents a new STAKCERT KDD processes for worm detection. The enhancement introduced in the data-preprocessing resulted in the formation of a new STAKCERT model for worm detection. In this paper we explained in detail how all the processes involved in the STAKCERT KDD processes are applied within the STAKCERT model for worm detection. Based on the experiment conducted, the STAKCERT model yielded a 98.13% accuracy rate for worm detection by integrating the STAKCERT KDD processes.

Low Resolution Single Neural Network Based Face Recognition

This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.

3D Face Recognition Using Modified PCA Methods

In this paper we present an approach for 3D face recognition based on extracting principal components of range images by utilizing modified PCA methods namely 2DPCA and bidirectional 2DPCA also known as (2D) 2 PCA.A preprocessing stage was implemented on the images to smooth them using median and Gaussian filtering. In the normalization stage we locate the nose tip to lay it at the center of images then crop each image to a standard size of 100*100. In the face recognition stage we extract the principal component of each image using both 2DPCA and (2D) 2 PCA. Finally, we use Euclidean distance to measure the minimum distance between a given test image to the training images in the database. We also compare the result of using both methods. The best result achieved by experiments on a public face database shows that 83.3 percent is the rate of face recognition for a random facial expression.

Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process

It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.

An Improved Preprocessing for Biosonar Target Classification

An improved processing description to be employed in biosonar signal processing in a cochlea model is proposed and examined. It is compared to conventional models using a modified discrimination analysis and both are tested. Their performances are evaluated with echo data captured from natural targets (trees).Results indicate that the phase characteristics of low-pass filters employed in the echo processing have a significant effect on class separability for this data.

Segmentation Problems and Solutions in Printed Degraded Gurmukhi Script

Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper we have proposed a complete solution for segmenting touching characters in all the three zones of printed Gurmukhi script. A study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis. Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone, upper zone and lower zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded printed Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text. We have also discussed a new and useful technique to segment the horizontally overlapping lines.

Feature Selection Methods for an Improved SVM Classifier

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, three feature selection methods are evaluated: Random Selection, Information Gain (IG) and Support Vector Machine feature selection (called SVM_FS). We show that the best results were obtained with SVM_FS method for a relatively small dimension of the feature vector. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).

A New Approach to Face Recognition Using Dual Dimension Reduction

In this paper a new approach to face recognition is presented that achieves double dimension reduction, making the system computationally efficient with better recognition results and out perform common DCT technique of face recognition. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results change with change in face image resolution and provide optimal results when arriving at a certain resolution level. In the proposed model of face recognition, initially image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to increased computational speed and feature extraction potential of Discrete Cosine Transform (DCT), it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A tradeoff between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL , Yale and EME color database.

On Preprocessing of Speech Signals

Preprocessing of speech signals is considered a crucial step in the development of a robust and efficient speech or speaker recognition system. In this paper, we present some popular statistical outlier-detection based strategies to segregate the silence/unvoiced part of the speech signal from the voiced portion. The proposed methods are based on the utilization of the 3 σ edit rule, and the Hampel Identifier which are compared with the conventional techniques: (i) short-time energy (STE) based methods, and (ii) distribution based methods. The results obtained after applying the proposed strategies on some test voice signals are encouraging.

Numerical Study of Airfoils Aerodynamic Performance in Heavy Rain Environment

Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of cambered NACA 64-210 and symmetric NACA 0012 airfoils. Our results show significant increase in drag and decrease in lift. We used preprocessing software gridgen for creation of geometry and mesh, used fluent as solver and techplot as postprocessor. Discrete phase modeling called DPM is used to model the rain particles using two phase flow approach. The rain particles are assumed to be inert. Both airfoils showed significant decrease in lift and increase in drag in simulated rain environment. The most significant difference between these two airfoils was the NACA 64-210 more sensitivity than NACA 0012 to liquid water content (LWC). We believe that the results showed in this paper will be useful for the designer of the commercial aircrafts and UAVs, and will be helpful for training of the pilots to control the airplanes in heavy rain.

Image Clustering Framework for BAVM Segmentation in 3DRA Images: Performance Analysis

Brain ArterioVenous Malformation (BAVM) is an abnormal tangle of brain blood vessels where arteries shunt directly into veins with no intervening capillary bed which causes high pressure and hemorrhage risk. The success of treatment by embolization in interventional neuroradiology is highly dependent on the accuracy of the vessels visualization. In this paper the performance of clustering techniques on vessel segmentation from 3- D rotational angiography (3DRA) images is investigated and a new technique of segmentation is proposed. This method consists in: preprocessing step of image enhancement, then K-Means (KM), Fuzzy C-Means (FCM) and Expectation Maximization (EM) clustering are used to separate vessel pixels from background and artery pixels from vein pixels when possible. A post processing step of removing false-alarm components is applied before constructing a three-dimensional volume of the vessels. The proposed method was tested on six datasets along with a medical assessment of an expert. Obtained results showed encouraging segmentations.

Weld Defect Detection in Industrial Radiography Based Digital Image Processing

Industrial radiography is a famous technique for the identification and evaluation of discontinuities, or defects, such as cracks, porosity and foreign inclusions found in welded joints. Although this technique has been well developed, improving both the inspection process and operating time, it does suffer from several drawbacks. The poor quality of radiographic images is due to the physical nature of radiography as well as small size of the defects and their poor orientation relatively to the size and thickness of the evaluated parts. Digital image processing techniques allow the interpretation of the image to be automated, avoiding the presence of human operators making the inspection system more reliable, reproducible and faster. This paper describes our attempt to develop and implement digital image processing algorithms for the purpose of automatic defect detection in radiographic images. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of global and local preprocessing and segmentation methods must be appropriated.

Evaluating some Feature Selection Methods for an Improved SVM Classifier

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of features selection methods to reduce the dimensionality of the document-representation vector. Four feature selection methods are evaluated: Random Selection, Information Gain (IG), Support Vector Machine (called SVM_FS) and Genetic Algorithm with SVM (GA_FS). We showed that the best results were obtained with SVM_FS and GA_FS methods for a relatively small dimension of the features vector comparative with the IG method that involves longer vectors, for quite similar classification accuracies. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).

Automated Thickness Measurement of Retinal Blood Vessels for Implementation of Clinical Decision Support Systems in Diagnostic Diabetic Retinopathy

The structure of retinal vessels is a prominent feature, that reveals information on the state of disease that are reflected in the form of measurable abnormalities in thickness and colour. Vascular structures of retina, for implementation of clinical diabetic retinopathy decision making system is presented in this paper. Retinal Vascular structure is with thin blood vessel, whose accuracy is highly dependent upon the vessel segmentation. In this paper the blood vessel thickness is automatically detected using preprocessing techniques and vessel segmentation algorithm. First the capture image is binarized to get the blood vessel structure clearly, then it is skeletonised to get the overall structure of all the terminal and branching nodes of the blood vessels. By identifying the terminal node and the branching points automatically, the main and branching blood vessel thickness is estimated. Results are presented and compared with those provided by clinical classification on 50 vessels collected from Bejan Singh Eye hospital..

A Text Mining Technique Using Association Rules Extraction

This paper describes text mining technique for automatically extracting association rules from collections of textual documents. The technique called, Extracting Association Rules from Text (EART). It depends on keyword features for discover association rules amongst keywords labeling the documents. In this work, the EART system ignores the order in which the words occur, but instead focusing on the words and their statistical distributions in documents. The main contributions of the technique are that it integrates XML technology with Information Retrieval scheme (TFIDF) (for keyword/feature selection that automatically selects the most discriminative keywords for use in association rules generation) and use Data Mining technique for association rules discovery. It consists of three phases: Text Preprocessing phase (transformation, filtration, stemming and indexing of the documents), Association Rule Mining (ARM) phase (applying our designed algorithm for Generating Association Rules based on Weighting scheme GARW) and Visualization phase (visualization of results). Experiments applied on WebPages news documents related to the outbreak of the bird flu disease. The extracted association rules contain important features and describe the informative news included in the documents collection. The performance of the EART system compared with another system that uses the Apriori algorithm throughout the execution time and evaluating extracted association rules.

Fractal - Wavelet Based Techniques for Improving the Artificial Neural Network Models

Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for preprocessing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based preprocessing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.

Spectral Analysis of Speech: A New Technique

ICA which is generally used for blind source separation problem has been tested for feature extraction in Speech recognition system to replace the phoneme based approach of MFCC. Applying the Cepstral coefficients generated to ICA as preprocessing has developed a new signal processing approach. This gives much better results against MFCC and ICA separately, both for word and speaker recognition. The mixing matrix A is different before and after MFCC as expected. As Mel is a nonlinear scale. However, cepstrals generated from Linear Predictive Coefficient being independent prove to be the right candidate for ICA. Matlab is the tool used for all comparisons. The database used is samples of ISOLET.

Key Frames Extraction for Sign Language Video Analysis and Recognition

In this paper we proposed a method for finding video frames representing one sign in the finger alphabet. The method is based on determining hands location, segmentation and the use of standard video quality evaluation metrics. Metric calculation is performed only in regions of interest. Sliding mechanism for finding local extrema and adaptive threshold based on local averaging is used for key frames selection. The success rate is evaluated by recall, precision and F1 measure. The method effectiveness is compared with metrics applied to all frames. Proposed method is fast, effective and relatively easy to realize by simple input video preprocessing and subsequent use of tools designed for video quality measuring.

Multi-View Neural Network Based Gait Recognition

Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk [1]. Gait recognition has 3 steps. The first step is preprocessing, the second step is feature extraction and the third one is classification. This paper focuses on the classification step that is essential to increase the CCR (Correct Classification Rate). Multilayer Perceptron (MLP) is used in this work. Neural Networks imitate the human brain to perform intelligent tasks [3].They can represent complicated relationships between input and output and acquire knowledge about these relationships directly from the data [2]. In this paper we apply MLP NN for 11 views in our database and compare the CCR values for these views. Experiments are performed with the NLPR databases, and the effectiveness of the proposed method for gait recognition is demonstrated.

Designing Ontology-Based Knowledge Integration for Preprocessing of Medical Data in Enhancing a Machine Learning System for Coding Assignment of a Multi-Label Medical Text

This paper discusses the designing of knowledge integration of clinical information extracted from distributed medical ontologies in order to ameliorate a machine learning-based multilabel coding assignment system. The proposed approach is implemented using a decision tree technique of the machine learning on the university hospital data for patients with Coronary Heart Disease (CHD). The preliminary results obtained show a satisfactory finding that the use of medical ontologies improves the overall system performance.