The CommonSense Platform for Conducting Multiple Participant Field-Experiments Using Mobile-Phones

This paper presents CommonSense, a platform that provides researchers with the infrastructure and tools that enable the efficient and smooth creation, execution and processing of multiple participant experiments taking place outside the laboratory environment. The platform provides the infrastructure and tools to accompany the researchers throughout the life cycle of an experiment – from its inception, through its execution, to its processing and termination. The approach of our platform is based on providing a comprehensive solution, which puts emphasis on the support for the entire life-cycle of an experiment, starting from its definition, the setting up and the configuration of the platform, through the management of the experiment itself and its post processing. Some of the components that support those processes are constructed and configured automatically from the experiment definition.

Static Balance in the Elderly: Comparison between Elderly Performing Physical Activity and Fine Motor Coordination Activity

Senescence changes include postural balance, inferring the risk of falls, and can lead to fractures, bedridden, and the risk of death. Physical activity, e.g., cardiovascular exercises, is notable for improving balance due to brain cell stimulations, but fine coordination exercises also elevate cell brain metabolism. This study aimed to verify whether the elderly person who performs fine motor activity has a balance similar to that of those who practice physical activity. The subjects were divided into three groups according to the activity practice: control group (CG) with seven participants for the sedentary individuals, motor coordination group (MCG) with six participants, and physical activity group (PAG) with eight participants. Data comparisons were from the Berg balance scale, Time up and Go test, and stabilometric analysis. Descriptive statistical and ANOVA analyses were performed for data analysis. The results reveal that including fine motor activities can improve the balance of the elderly and indirectly decrease the risk of falls.

3D Modeling Approach for Cultural Heritage Structures: The Case of Virgin of Loreto Chapel in Cusco, Peru

Nowadays, Heritage Building Information Modeling (HBIM) is considered an efficient tool to represent and manage information of Cultural Heritage (CH). The basis of this tool relies on a 3D model generally obtained from a Cloud-to-BIM procedure. There are different methods to create an HBIM model that goes from manual modeling based on the point cloud to the automatic detection of shapes and the creation of objects. The selection of these methods depends on the desired Level of Development (LOD), Level of Information (LOI), Grade of Generation (GOG) as well as on the availability of commercial software. This paper presents the 3D modeling of a stone masonry chapel using Recap Pro, Revit and Dynamo interface following a three-step methodology. The first step consists of the manual modeling of simple structural (e.g., regular walls, columns, floors, wall openings, etc.) and architectural (e.g., cornices, moldings and other minor details) elements using the point cloud as reference. Then, Dynamo is used for generative modeling of complex structural elements such as vaults, infills and domes. Finally, semantic information (e.g., materials, typology, state of conservation, etc.) and pathologies are added within the HBIM model as text parameters and generic models’ families respectively. The application of this methodology allows the documentation of CH following a relatively simple to apply process that ensures adequate LOD, LOI and GOG levels. In addition, the easy implementation of the method as well as the fact of using only one BIM software with its respective plugin for the scan-to-BIM modeling process means that this methodology can be adopted by a larger number of users with intermediate knowledge and limited resources, since the BIM software used has a free student license.

Knowledge, Attitude and Practice of Pregnant Women toward Antenatal Care at Public Hospitals in Sana'a City-Yemen

Background: Antenatal care can be defined as the care provided by skilled healthcare professionals to pregnant women and adolescent girls to ensure the best health conditions for both mother and baby during pregnancy. The components of Antenatal Care (ANC) include risk identification; prevention and management of pregnancy-related or concurrent diseases; and health education and health promotion. The aim of this study: to assess the knowledge, attitude, and practice of pregnant women regarding ANC. Methodology: A descriptive knowledge, attitude, and practice (KAP) study was conducted in public hospitals in Sana'a City, Yemen. The study population included all pregnant women that intended to the prenatal department and clinical outpatient department; the final sample size was 371 pregnant women. A self-administered questionnaire was used to collect the data, statistical package for social sciences SPSS was used to data analysis. The results: Most (79%) of pregnant women had correct answers in total knowledge regarding ANC, and about two-thirds (67%) of pregnant women had performance practice regarding ANC and two-third (68%) of pregnant women had a positive attitude. Conclusions: More than three quarter of pregnant women had good knowledge level, most of pregnant women had moderate practice level, and more than two-thirds of pregnant women had a positive attitude regarding antenatal care. There was a statistically significant association between overall knowledge and practice level toward ANC and demographic characteristics of pregnant women, at P-value ≤ 0.05. Recommendations: we recommended more education and training courses, lecturers, and education sessions in clinical facilitators focused on ANC, which relies on evidence-based interventions provided to women during pregnancy by skilled healthcare providers such as midwives, doctors, and nurses.

A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain

To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of the manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. Blockchain mechanism such as Bitcoin using Public Key Infrastructure (PKI) requires plaintext to be shared between companies in order to verify the identity of the company that sent the data. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems, this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is top-secret. In this scenario, we show an implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.

A Large Dataset Imputation Approach Applied to Country Conflict Prediction Data

This study demonstrates an alternative stochastic imputation approach for large datasets when preferred commercial packages struggle to iterate due to numerical problems. A large country conflict dataset motivates the search to impute missing values well over a common threshold of 20% missingness. The methodology capitalizes on correlation while using model residuals to provide the uncertainty in estimating unknown values. Examination of the methodology provides insight toward choosing linear or nonlinear modeling terms. Static tolerances common in most packages are replaced with tailorable tolerances that exploit residuals to fit each data element. The methodology evaluation includes observing computation time, model fit, and the comparison of known  values to replaced values created through imputation. Overall, the country conflict dataset illustrates promise with modeling first-order interactions, while presenting a need for further refinement that mimics predictive mean matching.

Comparison of Numerical and Laboratory Results of Pull-out Test on Soil–Geogrid Interactions

The knowledge of soil–reinforcement interaction parameters is particularly important in the design of reinforced soil structures. The pull-out test is one of the most widely used tests in this regard. The results of tensile tests may be very sensitive to boundary conditions, and more research is needed for a better understanding of the pull-out response of reinforcement, so numerical analysis using the finite element method can be a useful tool for the understanding of the pull-out response of soil-geogrid interaction. The main objective of the present study is to compare the numerical and experimental results of a pull-out test on geogrid-reinforced sandy soils interactions. Plaxis 2D finite element software is used for simulation. In the present study, the pull-out test modeling has been done on sandy soil. The effect of geogrid hardness was also investigated by considering two different types of geogrids. The numerical results curve had a good agreement with the pull-out laboratory results.

Stock Movement Prediction Using Price Factor and Deep Learning

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Development of a Smart Liquid Level Controller

In this paper, we present a microcontroller-based liquid level controller which identifies the various levels of a liquid, carries out certain actions and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks.

A Procedure to Assess Streamflow Rating Curves and Streamflow Sequences

This study aims to provide sub-hourly streamflow predictions and associated rating curves for small catchments of intermittent and torrential flow regime characterized by flash floods occurring especially during April and November. The methodology entails two lumped conceptual hydrological models which work in series. The total model is based upon eleven parameters and shows good flexibility in handling different input sets. Runoff Coefficient has contributed to improving the model’s performances and has been treated as an additional parameter; while Sensitivity Analysis has highlighted how slight changes in the model’s input can lead to changes in model’s output. The adopted procedure is steady and useful to give very practical engineering information at the expense of a parsimonious request both in input data and in the number of adopted parameters. According to the obtained results, the authors encourage the test of this combined procedure on different hydrological scenarios in order to provide information for poorly monitored catchments and not updated sites.

A Mixed Method Study Investigating Dyslexia and Students’ Experiences of Anxiety and Coping

Adult students with dyslexia can receive support for cognitive needs but may also experience anxiety, which is less understood. This study aims to test the hypothesis that dyslexic learners in higher education have a higher prevalence of academic and social anxiety than their non-dyslexic peers and explores wider emotional consequences of studying with dyslexia and the ways that adults with dyslexia cope cognitively and emotionally. A mixed method approach was used in two stages. Stage one compared survey responses from students with dyslexia (N = 102) and students without dyslexia (N = 72) after completion of an anxiety inventory. Stage two explored emotional consequences of studying with dyslexia and types of coping strategies used through semi-structured interviews with 20 dyslexic students. Results revealed a statistically significant effect for academic anxiety but not for social anxiety. Findings for stage two showed that: (1) students’ emotional consequences were characterised by a mixture of negative and positive responses, yet negative responses were more frequent in response to questions about academic tasks than positive responses; (2) participants had less to say on coping emotionally, than coping cognitively.

Elegant: An Intuitive Software Tool for Interactive Learning of Power System Analysis

A common complaint from power system analysis students lies in the overly complex tools they need to learn and use just to simulate very basic systems or just to check the answers to power system calculations. The most basic power system studies are power-flow solutions and short-circuit calculations. This paper presents a simple tool with an intuitive interface to perform both these studies and assess its performance in comparison with existent commercial solutions. With this in mind, Elegant is a pure Python software tool for learning power system analysis developed for undergraduate and graduate students. It solves the power-flow problem by iterative numerical methods and calculates bolted short-circuit fault currents by modeling the network in the domain of symmetrical components. Elegant can be used with a user-friendly Graphical User Interface (GUI) and automatically generates human-readable reports of the simulation results. The tool is exemplified using a typical Brazilian regional system with 18 buses. This study performs a comparative experiment with 1 undergraduate and 4 graduate students who attempted the same problem using both Elegant and a commercial tool. It was found that Elegant significantly reduces the time and labor involved in basic power system simulations while still providing some insights into real power system designs.

Random Subspace Neural Classifier for Meteor Recognition in the Night Sky

This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.

Investigating Technical and Pedagogical Considerations in Producing Screen Recorded Videos

Due to the COVID-19 pandemic, its impacts on education all over the world, and the problems arising from the use of traditional methods in education during the pandemic, it was necessary to apply alternative solutions to achieve educational goals. In this regard, electronic content production through screen recording became popular among many teachers. However, the production of screen-recorded videos requires special technical and pedagogical considerations. The purpose of this study was to extract and present the technical and pedagogical considerations for producing screen-recorded videos to provide a useful and comprehensive guideline for e-content producers. This study was applied research, the design was descriptive, and data collection has been done using qualitative method. In order to collect the data, 524 previously produced screen-recorded videos were evaluated by using an open-ended questionnaire. After collecting the data, they were categorized, and finally, 83 items as technical and pedagogical considerations in the form of 5 domains were determined. By applying such considerations, it is expected to decrease producing and editing time, increase the technical and pedagogical quality, and finally facilitate and enhance the processes of teaching and learning.

Development of a Basic Robot System for Medical and Nursing Care for Patients with Glaucoma

Medical methods to completely treat glaucoma are yet to be developed. Therefore, ophthalmologists manage patients mainly to delay disease progression. Patients with glaucoma are mainly elderly individuals. In elderly people's houses, having an equipment that can provide medical treatment and care can release their family from their care. For elderly people with the glaucoma to live by themselves as much as possible, we developed a support robot having five functions: elderly people care, ophthalmological examination, trip assistance to the neighborhood, medical treatment, and data referral to a hospital. The medical and nursing care robot should approach the visual field that the patients can see at a speed suitable for their eyesight. This is because the robot will be dangerous if it approaches the patients from the visual field that they cannot see. We experimentally developed a robot that brings a white cane to elderly people with glaucoma. The base part of the robot is a carriage, which is a Megarover 1.1, and it has two infrared sensors. The robot moves along a white line on the floor using the infrared sensors and has a special arm, which does not use electricity. The arm can scoop the block attached to the white cane. Next, we also developed a direction detector comprised of a charge-coupled device camera (SVR41ResucueHD; Sun Mechatronics), goggles (MG-277MLF; Midori Anzen Co. Ltd.), and biconvex lenses with a focal length of 25 mm (Edmund Co.). Some young people were photographed using the direction detector, which was put on their faces. Image processing was performed using Scilab 6.1.0 and Image Processing and Computer Vision Toolbox 4.1.2. To measure the people's line of vision, we calculated the iris's center of gravity using five processes: reduction, trimming, binarization or gray scale, edge extraction, and Hough transform. We compared the binarization and gray scale processes in image processing. The binarization process was better than the gray scale process. For edge extraction, we compared five methods: Sobel, Prewitt, Laplacian of Gaussian, fast Fourier transform, and Canny. The Canny method was the optimal extraction method. We performed the Hough transform to search for the main coordinates from the iris's edge, and we found that the Hough transform could calculate the center point of the iris.

An Exploratory Approach to Consumer Based Online Authenticity: The Case of Terroir Product of Souss Massa Region, Morocco

Marketing research is starting to focus on authenticity to position an offer, especially terroir products. However, with internet its usage remains more problematic. This paper investigates how digitalization impacts the satisfaction of the quest for authenticity. On the theoretical level, it explains authenticity in the online and offline context in the postmodernism era. Then, an exploratory qualitative study tries to understand the contribution of the digitization to the satisfaction of the search of authenticity. Therefore, cooperatives selling terroir product on the internet are advised to keep also direct contact which tends to show traditional manner of production, in order to enhance customers’ perception of terroir product authenticity.

Shaping Traditional Chinese Culture in Contemporary Fashion: ‘Guochao’ as a Rising Aesthetic and the Case Study of the Designer Brand Angel Chen

With the unprecedented spread of cultural Chinese fashion design in the global fashion system, the under-identified ‘Guochao’ aesthetic that has emerged in the global market needs to be academically emphasized with a methodological approach looking at the Western-Eastern cultural hybridization present in fashion visualization. Through an in-depth and comprehensive investigation of a representative international-based Chinese designer, Angel Chen’s fashion show ‘Madam Qing’, this paper provides a methodological approach on how a form of traditional culture can be effectively extracted and applied to modern design using the most effective techniques. The central approach examined in this study involves creating aesthetic revolutions by addressing Chinese cultural identity through re-creating and modernizing traditional Chinese culture in design.

From the Fields to the Concrete: Urban Development of Campo Mourão

The automobile incentive policy in Brazil since the 1950s creates several problems in its cities, more visible in large centers such as São Paulo or Rio de Janeiro, but also strongly present in smaller cities, resulting in an increase in social and spatial inequality, together with a drop in the quality of life. The analyzed city, Campo Mourão, reflects these policies, a city that is initially planned to be compact and walkable, took other directions and currently suffers from urban mobility and social inequality in this urban environment, despite being a medium-sized city in Brazil. The research aims to understand and diagnose how these policies shaped the city and what are the results in Brazilian`s inland cities. Based on historical, bibliographical and field research in the city, the result is a diagnosis of the problem faced and how it can be reversed, in search of social equality and better quality of life.

Integrating Blockchain and Internet of Things Platforms: An Empirical Study on Immunization Cold Chain

The adoption of Blockchain technology introduces the possibility to decentralize cold chain systems. This adaptation enhances them to be more efficient, accessible, verifiable, and data security. Additionally, the Internet of Things (IoT) concept is considered as an added-value to various application domains. Cargo tracking and cold chain are a few to name. However, the security of the IoT transactions and integrated devices remains one of the key challenges to the IoT application’s success. Consequently, Blockchain technology and its consensus protocols have been used to solve many information security problems. In this paper, we discuss the advantages of integrating Blockchain technology into IoT platform to improve security and provide an overview of existing literature on integrating Blockchain and IoT platforms. Then, we present the immunization cold chain solution as a use-case that could be applied to any critical goods based on integrating Hyperledger fabric platform and IoT platform.

Language Learning, Drives, and Context: A Grounded Theory of Learning Behavior

This paper presents the Language Learning as a Means of Drive Engagement (LLMDE) theory, derived from a grounded theory analysis of interviews with Japanese university students. According to LLMDE theory, language learning can be understood as a means of engaging one or more of four self-fulfillment drives: the drive to expand one’s horizons (perspective drive); the drive to make a success of oneself (status drive); the drive to engage in interaction with others (communication drive); and the drive to obtain intellectual and affective stimulation (entertainment drive). While many theories of learner psychology focus on conscious agency, LLMDE theory addresses the role of the unconscious. In addition, supplementary thematic analysis of the data revealed the role of context in mediating drive engagement. Unexpected memorable events, for example, play a key role in instigating and, indirectly, in regulating learning, as do institutional and cultural contexts. Given the apparent importance of such factors beyond the immediate control of the learner, and given the pervasive role of habit and drives, it is argued that the concept of motivation merits theoretical reappraisal. Rather than an underlying force determining language learning success or failure, it can be understood to emerge sporadically in consciousness to promote behavioral change, or to protect habitual behavior from disruption.