Identifying Attack Code through an Ontology-Based Multiagent Tool: FROID

This paper describes the design and results of FROID, an outbound intrusion detection system built with agent technology and supported by an attacker-centric ontology. The prototype features a misuse-based detection mechanism that identifies remote attack tools in execution. Misuse signatures composed of attributes selected through entropy analysis of outgoing traffic streams and process runtime data are derived from execution variants of attack programs. The core of the architecture is a mesh of self-contained detection cells organized non-hierarchically that group agents in a functional fashion. The experiments show performance gains when the ontology is enabled as well as an increase in accuracy achieved when correlation cells combine detection evidence received from independent detection cells.

Statistical Modeling of Accelerated Pavement Failure Using Response Surface Methodology

Rutting is one of the major load-related distresses in airport flexible pavements. Rutting in paving materials develop gradually with an increasing number of load applications, usually appearing as longitudinal depressions in the wheel paths and it may be accompanied by small upheavals to the sides. Significant research has been conducted to determine the factors which affect rutting and how they can be controlled. Using the experimental design concepts, a series of tests can be conducted while varying levels of different parameters, which could be the cause for rutting in airport flexible pavements. If proper experimental design is done, the results obtained from these tests can give a better insight into the causes of rutting and the presence of interactions and synergisms among the system variables which have influence on rutting. Although traditionally, laboratory experiments are conducted in a controlled fashion to understand the statistical interaction of variables in such situations, this study is an attempt to identify the critical system variables influencing airport flexible pavement rut depth from a statistical DoE perspective using real field data from a full-scale test facility. The test results do strongly indicate that the response (rut depth) has too much noise in it and it would not allow determination of a good model. From a statistical DoE perspective, two major changes proposed for this experiment are: (1) actual replication of the tests is definitely required, (2) nuisance variables need to be identified and blocked properly. Further investigation is necessary to determine possible sources of noise in the experiment.

Formal Verification of a Multicast Protocol in Mobile Networks

As computer network technology becomes increasingly complex, it becomes necessary to place greater requirements on the validity of developing standards and the resulting technology. Communication networks are based on large amounts of protocols. The validity of these protocols have to be proved either individually or in an integral fashion. One strategy for achieving this is to apply the growing field of formal methods. Formal methods research defines systems in high order logic so that automated reasoning can be applied for verification. In this research we represent and implement a formerly announced multicast protocol in Prolog language so that certain properties of the protocol can be verified. It is shown that by using this approach some minor faults in the protocol were found and repaired. Describing the protocol as facts and rules also have other benefits i.e. leads to a process-able knowledge. This knowledge can be transferred as ontology between systems in KQML format. Since the Prolog language can increase its knowledge base every time, this method can also be used to learn an intelligent network.

Using Perspective Schemata to Model the ETL Process

Data Warehouses (DWs) are repositories which contain the unified history of an enterprise for decision support. The data must be Extracted from information sources, Transformed and integrated to be Loaded (ETL) into the DW, using ETL tools. These tools focus on data movement, where the models are only used as a means to this aim. Under a conceptual viewpoint, the authors want to innovate the ETL process in two ways: 1) to make clear compatibility between models in a declarative fashion, using correspondence assertions and 2) to identify the instances of different sources that represent the same entity in the real-world. This paper presents the overview of the proposed framework to model the ETL process, which is based on the use of a reference model and perspective schemata. This approach provides the designer with a better understanding of the semantic associated with the ETL process.

Simulation of Lid Cavity Flow in Rectangular, Half-Circular and Beer Bucket Shapes using Quasi-Molecular Modeling

We developed a new method based on quasimolecular modeling to simulate the cavity flow in three cavity shapes: rectangular, half-circular and bucket beer in cgs units. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a cavity flow was simulated, the instantaneous velocity vector fields were obtained by using an inverse distance weighted interpolation method. In all three cavity shapes, fluid motion was rotated counter-clockwise. The velocity vector fields of the three cavity shapes showed a primary vortex located near the upstream corners at time t ~ 0.500 s, t ~ 0.450 s and t ~ 0.350 s, respectively. The configurational kinetic energy of the cavities increased as time increased until the kinetic energy reached a maximum at time t ~ 0.02 s and, then, the kinetic energy decreased as time increased. The rectangular cavity system showed the lowest kinetic energy, while the half-circular cavity system showed the highest kinetic energy. The kinetic energy of rectangular, beer bucket and half-circular cavities fluctuated about stable average values 35.62 x 103, 38.04 x 103 and 40.80 x 103 ergs/particle, respectively. This indicated that the half-circular shapes were the most suitable shape for a shrimp pond because the water in shrimp pond flows best when we compared with rectangular and beer bucket shape.

Joint Optimization of Pricing and Advertisement for Seasonal Branded Products

The goal of this paper is to develop a model to integrate “pricing" and “advertisement" for short life cycle products, such as branded fashion clothing products. To achieve this goal, we apply the concept of “Dynamic Pricing". There are two classes of advertisements, for the brand (regardless of product) and for a particular product. Advertising the brand affects the demand and price of all the products. Thus, the model considers all these products in relation with each other. We develop two different methods to integrate both types of advertisement and pricing. The first model is developed within the framework of dynamic programming. However, due to the complexity of the model, this method cannot be applicable for large size problems. Therefore, we develop another method, called hieratical approach, which is capable of handling the real world problems. Finally, we show the accuracy of this method, both theoretically and also by simulation.

Technology Based Learning Environment and Student Achievement in English as a Foreign Language in Pakistan

The fast growing accessibility and capability of emerging technologies have fashioned enormous possibilities of designing, developing and implementing innovative teaching methods in the classroom. The global technological scenario has paved the way to new pedagogies in teaching-learning process focusing on technology based learning environment and its impact on student achievement. The present experimental study was conducted to determine the effectiveness of technology based learning environment on student achievement in English as a foreign language. The sample of the study was 90 students of 10th grade of a public school located in Islamabad. A pretest- posttest equivalent group design was used to compare the achievement of the two groups. A Pretest and A posttest containing 50 items each from English textbook were developed and administered. The collected data were statistically analyzed. The results showed that there was a significant difference between the mean scores of Experimental group and the Control group. The performance of Experimental group was better on posttest scores that indicted that teaching through technology based learning environment enhanced the achievement level of the students. On the basis of the results, it was recommended that teaching and learning through information and communication technologies may be adopted to enhance the language learning capability of the students.

A Robust LS-SVM Regression

In comparison to the original SVM, which involves a quadratic programming task; LS–SVM simplifies the required computation, but unfortunately the sparseness of standard SVM is lost. Another problem is that LS-SVM is only optimal if the training samples are corrupted by Gaussian noise. In Least Squares SVM (LS–SVM), the nonlinear solution is obtained, by first mapping the input vector to a high dimensional kernel space in a nonlinear fashion, where the solution is calculated from a linear equation set. In this paper a geometric view of the kernel space is introduced, which enables us to develop a new formulation to achieve a sparse and robust estimate.

Development and Assessment of Measuring/Rehabilitation Device for Myelopathy Patients with Lower Extremity Function

Disordered function of maniphalanx and difficulty with ambulation will occur insofar as a human has a failure in the spinal marrow. Cervical spondylotic myelopathy as one of the myelopathy emanates from not only external factors but also increased age. In addition, the diacrisis is difficult since cervical spondylotic myelopathy is evaluated by a doctor-s neurological remark and imaging findings. As a quantitative method for measuring the degree of disability, hand-operated triangle step test (for short, TST) has formulated. In this research, a full automatic triangle step counter apparatus is designed and developed to measure the degree of disability in an accurate fashion according to the principle of TST. The step counter apparatus whose shape is a low triangle pole displays the number of stepping upon each corner. Furthermore, the apparatus has two modes of operation. Namely, one is for measuring the degree of disability and the other for rehabilitation exercise. In terms of usefulness, clinical practice should be executed before too long.

Dynamic Window Secured Implicit Geographic Forwarding Routing for Wireless Sensor Network

Routing security is a major concerned in Wireless Sensor Network since a large scale of unattended nodes is deployed in ad hoc fashion with no possibility of a global addressing due to a limitation of node-s memory and the node have to be self organizing when the systems require a connection with the other nodes. It becomes more challenging when the nodes have to act as the router and tightly constrained on energy and computational capabilities where any existing security mechanisms are not allowed to be fitted directly. These reasons thus increasing vulnerabilities to the network layer particularly and to the whole network, generally. In this paper, a Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing is presented where a dynamic time is used for collection window to collect Clear to Send (CTS) control packet in order to find an appropriate hoping node. The DWIGF is expected to minimize a chance to select an attacker as the hoping node that caused by a blackhole attack that happen because of the CTS rushing attack, which promise a good network performance with high packet delivery ratios.

Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm

The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.

EU, US and Tax Incentives: An Application

The purpose of this paper is to shed light on the controversial subject of tax incentives to promote regional development. Although extensive research has been conducted, a review of the literature gives an inconclusive answer to whether economic incentives are effective. One reason is the fact that for some researchers “effective" means the significant location of new firms in targeted areas, while for others the creation of jobs regardless if new firms are arriving in a significant fashion. We present this dichotomy by analyzing a tax incentive program via both alternatives: location and job creation. The contribution of the paper is to inform policymakers about the potential opportunities and pitfalls when designing incentive strategies. This is particularly relevant, given that both the US and Europe have been promoting incentives as a tool for regional economic development.

Public R and D Risk and Risk Management Policy

R&D risk management has been suggested as one of the management approaches for accomplishing the goals of public R&D investment. The investment in basic science and core technology development is the essential roles of government for securing the social base needed for continuous economic growth. And, it is also an important role of the science and technology policy sectors to generate a positive environment in which the outcomes of public R&D can be diffused in a stable fashion by controlling the uncertainties and risk factors in advance that may arise during the application of such achievements to society and industry. Various policies have already been implemented to manage uncertainties and variables that may have negative impact on accomplishing public R& investment goals. But we may derive new policy measures for complementing the existing policies and for exploring progress direction by analyzing them in a policy package from the viewpoint of R&D risk management.

Septic B-spline Collocation Method for Solving One-dimensional Hyperbolic Telegraph Equation

Recently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion for such branches of sciences. In this paper, a numerical solution for the one-dimensional hyperbolic telegraph equation by using the collocation method using the septic splines is proposed. The scheme works in a similar fashion as finite difference methods. Test problems are used to validate our scheme by calculate L2-norm and L∞-norm. The accuracy of the presented method is demonstrated by two test problems. The numerical results are found to be in good agreement with the exact solutions.

Authentication in Multi-Hop Wireless Mesh Networks

Wireless Mesh Networks (WMNs) are an emerging technology for last-mile broadband access. In WMNs, similar to ad hoc networks, each user node operates not only as a host but also as a router. User packets are forwarded to and from an Internet-connected gateway in multi-hop fashion. The WMNs can be integrated with other networking technologies i.e. ad hoc networks, to implement a smooth network extension. The meshed topology provides good reliability and scalability, as well as low upfront investments. Despite the recent start-up surge in WMNs, much research remains to be done in standardizing the functional parameters of WMNs to fully exploit their full potential. An edifice of the security concerns of these networks is authentication of a new client joining an integrated ad hoc network and such a scenario will require execution of a multihop authentication technique. Our endeavor in this paper is to introduce a secure authentication technique, with light over-heads that can be conveniently implemented for the ad-hoc nodes forming clients of an integrated WMN, thus facilitating their inter-operability.

Robust Minutiae Watermarking in Wavelet Domain for Fingerprint Security

In this manuscript, a wavelet-based blind watermarking scheme has been proposed as a means to provide security to authenticity of a fingerprint. The information used for identification or verification of a fingerprint mainly lies in its minutiae. By robust watermarking of the minutiae in the fingerprint image itself, the useful information can be extracted accurately even if the fingerprint is severely degraded. The minutiae are converted in a binary watermark and embedding these watermarks in the detail regions increases the robustness of watermarking, at little to no additional impact on image quality. It has been experimentally shown that when the minutiae is embedded into wavelet detail coefficients of a fingerprint image in spread spectrum fashion using a pseudorandom sequence, the robustness is observed to have a proportional response while perceptual invisibility has an inversely proportional response to amplification factor “K". The DWT-based technique has been found to be very robust against noises, geometrical distortions filtering and JPEG compression attacks and is also found to give remarkably better performance than DCT-based technique in terms of correlation coefficient and number of erroneous minutiae.

Investigation of the Effectiveness of Siloxane Hydrophobic Injection for Renovation of Damp Brick Masonry

Experimental investigation of the effect of hydrophobic injection on siloxane basis on the properties of oldfashioned type of ceramic brick is presented in the paper. At the experimental testing, the matrix density, total open porosity, pore size distribution, sorptivity, water absorption coefficient, sorption and desorption isotherms are measured for the original, as well as the hydrophobic-injection treated brick. On the basis of measured data, the functionality of the hydrophobic injection for the moisture ingress prevention into the studied ceramic brick is assessed.

Simulation of Water Droplet on Horizontally Smooth and Rough Surfaces Using Quasi-Molecular Modelling

We developed a method based on quasi-molecular modelling to simulate the fall of water drops on horizontally smooth and rough surfaces. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a falling water droplet was simulated at low impact velocity on both smooth and rough surfaces, the droplets moved periodically (i.e. the droplets moved up and down for a certain period, finally they stopped moving and reached a steady state), spreading and recoiling without splash or break-up. Spreading rates of falling water droplets increased rapidly as time increased until the spreading rate reached its steady state at time t ~ 0.25 s for rough surface and t ~ 0.40 s for smooth surface. The droplet height above both surfaces decreased as time increased, remained constant after the droplet diameter attained a maximum value and reached its steady state at time t ~ 0.4 s. However, rough surface had higher spreading rates of falling water droplets and lower height on the surface than smooth one.

A Wireless Secure Remote Access Architecture Implementing Role Based Access Control: WiSeR

In this study, we propose a network architecture for providing secure access to information resources of enterprise network from remote locations in a wireless fashion. Our proposed architecture offers a very promising solution for organizations which are in need of a secure, flexible and cost-effective remote access methodology. Security of the proposed architecture is based on Virtual Private Network technology and a special role based access control mechanism with location and time constraints. The flexibility mainly comes from the use of Internet as the communication medium and cost-effectiveness is due to the possibility of in-house implementation of the proposed architecture.

Surface Flattening Assisted with 3D Mannequin Based On Minimum Energy

The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.