Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks

The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing handover procedure while the user is on the move. However, dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and/or handover failure because of short time of stay of a user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method decreases the candidate small cell list, unnecessary handovers, handover failure and short time of stay cells compared to the competitive method.

The Impact of ISO 9001 Certification on Brazilian Firms’ Performance: Insights from Multiple Case Studies

The evolution of quality management by companies was strongly enabled by, among others, ISO 9001 certification, which is considered a crucial requirement for several customers. Likewise, performance measurement provides useful insights for companies to identify the reflection of their decision-making process on their improvement. One of the most used performance measurement models is the balanced scorecard (BSC), which uses four perspectives to address a firm’s performance: financial, internal process, customer satisfaction, and learning and growth. Since ISO 9001 certified firms are likely to measure their performance through BSC approach, it is important to verify whether the certificate influences the firm performance or not. Therefore, this paper aims to verify the impact of ISO 9001:2015 on Brazilian firms’ performance based on the BSC perspective. Hence, nine certified companies located in the Southeast region of Brazil were studied through a multiple case study approach. Within this study, it was possible to identify the positive impact of ISO 9001 on firms’ overall performance, and four Critical Success Factors (CSFs) were identified as relevant on the linkage among ISO 9001 and firms’ performance: employee involvement, top management, process management, and customer focus. Due to the COVID-19 pandemic, the number of interviews was limited to the quality manager specialist, and the sample was limited since several companies were closed during the period of the study. This study presents an in-depth analysis of how the relationship between ISO 9001 certification and firms’ performance in a developing country is.

The Art of Leadership: Skills to Inspire the Team to Overcome Project Challenges and Achieve Their Goals

This paper highlights skills that a leader needs to acquire to lead a team successfully. With an appropriate vision and strategy, a team can be inspired, influenced and easily led. The importance of setting codes of conduct and establishing mutual agreements between the team members can help in minimizing issues and improving overall productivity. Leadership skills include the power of questioning (PoQ), effective communication, identification of team member responsibilities, and assessment of self and the team. This paper will highlight the impact of good leadership on work progress and overall team performance. The paper explains how leaders make correct decisions by avoiding hasty actions that could generate new errors, mistakes, and issues. The importance of positive expectations for the team is addressed in this paper that could result in efficient control of the work with better outcomes.

Machine Learning for Music Aesthetic Annotation Using MIDI Format: A Harmony-Based Classification Approach

Swimming with the tide of deep learning, the field of music information retrieval (MIR) experiences parallel development and a sheer variety of feature-learning models has been applied to music classification and tagging tasks. Among those learning techniques, the deep convolutional neural networks (CNNs) have been widespreadly used with better performance than the traditional approach especially in music genre classification and prediction. However, regarding the music recommendation, there is a large semantic gap between the corresponding audio genres and the various aspects of a song that influence user preference. In our study, aiming to bridge the gap, we strive to construct an automatic music aesthetic annotation model with MIDI format for better comparison and measurement of the similarity between music pieces in the way of harmonic analysis. We use the matrix of qualification converted from MIDI files as input to train two different classifiers, support vector machine (SVM) and Decision Tree (DT). Experimental results in performance of a tag prediction task have shown that both learning algorithms are capable of extracting high-level properties in an end-to end manner from music information. The proposed model is helpful to learn the audience taste and then the resulting recommendations are likely to appeal to a niche consumer.

Enhancing the Effectiveness of Air Defense Systems through Simulation Analysis

Air Defense Systems contain high-value assets that are expected to fulfill their mission for several years - in many cases, even decades - while operating in a fast-changing, technology-driven environment. Thus, it is paramount that decision-makers can assess how effective an Air Defense System is in the face of new developing threats, as well as to identify the bottlenecks that could jeopardize the security of the airspace of a country. Given the broad extent of activities and the great variety of assets necessary to achieve the strategic objectives, a systems approach was taken in order to delineate the core requirements and the physical architecture of an Air Defense System. Then, value-focused thinking helped in the definition of the measures of effectiveness. Furthermore, analytical methods were applied to create a formal structure that preliminarily assesses such measures. To validate the proposed methodology, a powerful simulation was also used to determine the measures of effectiveness, now in more complex environments that incorporate both uncertainty and multiple interactions of the entities. The results regarding the validity of this methodology suggest that the approach can support decisions aimed at enhancing the capabilities of Air Defense Systems. In conclusion, this paper sheds some light on how consolidated approaches of Systems Engineering and Operations Research can be used as valid techniques for solving problems regarding a complex and yet vital matter.

Systematic Examination of Methods Supporting the Social Innovation Process

Innovation is the key element of economic development and a key factor in social processes. Technical innovations can be identified as prerequisites and causes of social change and cannot be created without the renewal of society. The study of social innovation can be characterised as one of the significant research areas of our day. The study’s aim is to identify the process of social innovation, which can be defined by input, transformation, and output factors. This approach divides the social innovation process into three parts: situation analysis, implementation, follow-up. The methods associated with each stage of the process are illustrated by the chronological line of social innovation. In this study, we have sought to present methodologies that support long- and short-term decision-making that is easy to apply, have different complementary content, and are well visualised for different user groups. When applying the methods, the reference objects are different: county, district, settlement, specific organisation. The solution proposed by the study supports the development of a methodological combination adapted to different situations. Having reviewed metric and conceptualisation issues, we wanted to develop a methodological combination along with a change management logic suitable for structured support to the generation of social innovation in the case of a locality or a specific organisation. In addition to a theoretical summary, in the second part of the study, we want to give a non-exhaustive picture of the two counties located in the north-eastern part of Hungary through specific analyses and case descriptions.

A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Select-Low and Select-High Methods for the Wheeled Robot Dynamic States Control

The paper enquires on the two methods of the wheeled robot braking torque control. Those two methods are applied when the adhesion coefficient under left side wheels is different from the adhesion coefficient under the right side wheels. In case of the select-low (SL) method the braking torque on both wheels is controlled by the signals originating from the wheels on the side of the lower adhesion. In the select-high (SH) method the torque is controlled by the signals originating from the wheels on the side of the higher adhesion. The SL method is securing stable and secure robot behaviors during the braking process. However, the efficiency of this method is relatively low. The SH method is more efficient in terms of time and braking distance but in some situations may cause wheels blocking. It is important to monitor the velocity of all wheels and then take a decision about the braking torque distribution accordingly. In case of the SH method the braking torque slope may require significant decrease in order to avoid wheel blocking.

Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Strategic Investment in Infrastructure Development to Facilitate Economic Growth in the United States

The COVID-19 pandemic is unprecedented in terms of its global reach and economic impacts. Historically, investment in infrastructure development projects has been touted to boost the economic growth of a nation. The State and Local governments responsible for delivering infrastructure assets work under tight budgets. Therefore, it is important to understand which infrastructure projects have the highest potential of boosting economic growth in the post-pandemic era. This paper presents relationships between infrastructure projects and economic growth. Statistical relationships between investment in different types of infrastructure projects (transit, water and wastewater, highways, power, manufacturing etc.) and indicators of economic growth are presented using historic data between 2002 and 2020 from the U.S. Census Bureau and U.S. Bureau of Economic Analysis (BEA). The outcome of the paper is the comparison of statistical correlations between investment in different types of infrastructure projects and indicators of economic growth. The comparison of the statistical correlations is useful in ranking the types of infrastructure projects based on their ability to influence economic prosperity. Therefore, investment in the infrastructures with the higher rank will have a better chance of boosting the economic growth. Once, the ranks are derived, they can be used by the decision-makers in infrastructure investment related decision-making process.

Vulnerability Analysis for Risk Zones Boundary Definition to Support a Decision Making Process at CBRNE Operations

An effective emergency response to accidents with chemical, biological, radiological, nuclear, or explosive materials (CBRNE) that represent highly dynamic situations needs immediate actions within limited time, information and resources. The aim of the study is to provide the foundation for division of unsafe area into risk zones according to the impact of hazardous parameters (heat radiation, thermal dose, overpressure, chemical concentrations). A decision on the boundary values for three risk zones is based on the vulnerability analysis that covered a variety of accident scenarios containing the release of a toxic or flammable substance which either evaporates, ignites and/or explodes. Critical values are selected for the boundary definition of the Red, Orange and Yellow risk zones upon the examination of harmful effects that are likely to cause injuries of varying severity to people and different levels of damage to structures. The obtained results provide the basis for creating a comprehensive real-time risk map for a decision support at CBRNE operations.

Presidential Interactions with Faculty Senates: Expectations and Practices

Shared governance is an important element in higher education decision making. Through the joint decision making process, faculty members are provided an opportunity to help shape the future of an institution while increasing support for decisions that are made. Presidents, those leaders who are legally bound to guide their institutions, must find ways to collaborate effectively with faculty members in making decisions, and the first step in this process is understanding when and how presidents and faculty leaders interact. In the current study, a national sample of college presidents reported their preparation for the presidency, their perceptions of the functions of a faculty senate, and ultimately, the locations for important interactions between presidents and faculty senates. Results indicated that presidents, regardless of their preparation, found official functions to be the most important for communicating, although, those presidents with academic backgrounds were more likely to perceive faculty senates as having a role in all aspects of an institutions management.

The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination

The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.

An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators

The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.

Users’ Information Disclosure Determinants in Social Networking Sites: A Systematic Literature Review

The privacy paradox describes a phenomenon whereby there is no connection between stated privacy concerns and privacy behaviours. We need to understand the underlying reasons for this paradox if we are to help users to preserve their privacy more effectively. In particular, the Social Networking System (SNS) domain offers a rich area of investigation due to the risks of unwise information disclosure decisions. Our study thus aims to untangle the complicated nature and underlying mechanisms of online privacy-related decisions in SNSs. In this paper, we report on the findings of a Systematic Literature Review (SLR) that revealed a number of factors that are likely to influence online privacy decisions. Our deductive analysis approach was informed by Communicative Privacy Management (CPM) theory. We uncovered a lack of clarity around privacy attitudes and their link to behaviours, which makes it challenging to design privacy-protecting SNS platforms and to craft legislation to ensure that users’ privacy is preserved.

Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program

Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.

Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks

The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.

Seismic Response of Hill Side Step-back RC Framed Buildings with Shear Wall and Bracing System

The hillside building shows different behavior as a flat ground building in lateral loading. Especially the step back building in the sloping ground has different seismic behavior. The hillside building 3D model having different types of structural elements is introduced and analyzed with a seismic effect. The structural elements such as the shear wall, steel, and concrete bracing are used to resist the earthquake load and compared with without using any shear wall and bracing system. The X, inverted V, and diagonal bracing are used. The total nine models are prepared in ETABs finite element coding software. The linear dynamic analysis is the response spectrum analysis (RSA) carried out to study dynamic behaviors in means of top story displacement, story drift, fundamental time period, story stiffness, and story shear. The results are analyzed and made some decisions based on seismic performance. It is also observed that it is better to use the X bracing system for lateral load resisting elements.

Destination Decision Model for Cruising Taxis Based on Embedding Model

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Journey to Cybercrime and Crime Opportunity: Quantitative Analysis of Cyber Offender Spatial Decision Making

Due to the advantage of using the Internet, cybercriminals can reach target(s) without border controls. Prior research on criminology and crime science has largely been void of empirical studies on journey-to-cybercrime and crime opportunity. Thus, the purpose of this study is to understand more about cyber offender spatial decision making associated with crime opportunity factors (i.e., co-offending, offender-stranger). Data utilized in this study were derived from 306 U.S. Federal court cases of cybercrime. The findings of this study indicated that there was a positive relationship between co-offending and journey-to-cybercrime, whereas there was no link between offender-stranger and journey-to-cybercrime. Also, the results showed that there was no relationship between cybercriminal sex, age, and journey-to-cybercrime. The policy implications and limitations of this study are discussed.