Effects of Irradiation to Morphological, Physicochemical and Biocompatibility Properties of Carrageenan

The characterization of κ-carrageenan could provide a better understanding of its functions in biological, medical and industrial applications. Chemical and physical analyses of carrageenan from seaweeds, Euchema cottonii L., were done to offer information on its properties and the effects of Co-60 γ-irradiation on its thermochemical characteristics. The structural and morphological characteristics of κ-carrageenan were determined using scanning electron microscopy (SEM) while the composition, molecular weight and thermal properties were determined using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), gel permeation chromatography (GPC), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Further chemical analysis was done using hydrogen-1 nuclear magnetic resonance (1H NMR) and functional characteristics in terms of biocompatibility were evaluated using cytotoxicity test.

Thermal and Mechanical Properties of Modified CaCO3 /PP Nanocomposites

Inorganic nanoparticles filled polymer composites have extended their multiple functionalities to various applications, including mechanical reinforcement, gas barrier, dimensional stability, heat distortion temperature, flame-retardant, and thermal conductivity. Sodium stearate-modified calcium carbonate (CaCO3) nanoparticles were prepared using surface modification method. The results showed that sodium stearate attached to the surface of CaCO3 nanoparticles with the chemical bond. The effect of modified CaCO3 nanoparticles on thermal properties of polypropylene (PP) was studied by means of differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). It was found that CaCO3 significantly affected the crystallization temperature and crystallization degree of PP. Effect of the modified CaCO3 content on mechanical properties of PP/CaCO3 nanocomposites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical properties of PP. In comparison with PP, the impact strength of PP/CaCO3 nanocomposites increased by about 65% and the hardness increased by about 5%.

Increased Solubility, Dissolution and Physicochemical Studies of Curcumin- Polyvinylpyrrolidone K-30 Solid Dispersions

Solid dispersions (SD) of curcuminpolyvinylpyrrolidone in the ratio of 1:2, 1:4, 1:5, 1:6, and 1:8 were prepared in an attempt to increase the solubility and dissolution. Solubility, dissolution, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) of solid dispersions, physical mixtures (PM) and curcumin were evaluated. Both solubility and dissolution of curcumin solid dispersions were significantly greater than those observed for physical mixtures and intact curcumin. The powder X-ray diffractograms indicated that the amorphous curcumin was obtained from all solid dispersions. It was found that the optimum weight ratio for curcumin:PVP K-30 is 1:6. The 1:6 solid dispersion still in the amorphous from after storage at ambient temperature for 2 years and the dissolution profile did not significantly different from freshly prepared.

Novel Glycopolymers Containing Carbohydrate Moiety: Copolymerization and Thermal Properties

Polymers are one of the most widely used materials in our every day life. The subject of renewable resources has attracted great attention in the last period of time. New polymeric materials derived from renewable resources, like carbohydrates draw attention to public eye especially because of their biocompatibility and biodegradability. The aim of our paper was to obtain environmentally compatible polymers from monosaccharides. Novel glycopolymers based on D-glucose have been obtained from copolymerization of a new monomer carrying carbohydrate moiety with methyl methacrylate (MMA) via free radical bulk polymerization. Differential scanning calorimetry (DSC) was performed in order to study the copolymerization process of the monomer into the chosen co-monomer; the activation energy of this process was evaluated using Ozawa method. The copolymers obtained were characterized using ATR-FTIR spectroscopy. The thermal stability of the obtained products was studied by thermogravimetry (TG).