Biomolecules Based Microarray for Screening Human Endothelial Cells Behavior

Endothelial Progenitor Cell (EPC) based therapies continue to be of interest to treat ischemic events based on their proven role to promote blood vessel formation and thus tissue re-vascularisation. Current strategies for the production of clinical-grade EPCs requires the in vitro isolation of EPCs from peripheral blood followed by cell expansion to provide sufficient quantities EPCs for cell therapy. This study aims to examine the use of different biomolecules to significantly improve the current strategy of EPC capture and expansion on collagen type I (Col I). In this study, four different biomolecules were immobilised on a surface and then investigated for their capacity to support EPC capture and proliferation. First, a cell microarray platform was fabricated by coating a glass surface with epoxy functional allyl glycidyl ether plasma polymer (AGEpp) to mediate biomolecule binding. The four candidate biomolecules tested were Col I, collagen type II (Col II), collagen type IV (Col IV) and vascular endothelial growth factor A (VEGF-A), which were arrayed on the epoxy-functionalised surface using a non-contact printer. The surrounding area between the printed biomolecules was passivated with polyethylene glycol-bisamine (A-PEG) to prevent non-specific cell attachment. EPCs were seeded onto the microarray platform and cell numbers quantified after 1 h (to determine capture) and 72 h (to determine proliferation). All of the extracellular matrix (ECM) biomolecules printed demonstrated an ability to capture EPCs within 1 h of cell seeding with Col II exhibiting the highest level of attachment when compared to the other biomolecules. Interestingly, Col IV exhibited the highest increase in EPC expansion after 72 h when compared to Col I, Col II and VEGF-A. These results provide information for significant improvement in the capture and expansion of human EPC for further application.

Apoptotic Induction Ability of Harmalol and Its Binding: Biochemical and Biophysical Perspectives

Harmalol administration caused remarkable reduction in proliferation of HepG2 cells with GI50 of 14.2 mM, without showing much cytotoxicity in embryonic liver cell line, WRL-68. Data from circular dichroism and differential scanning calorimetric analysis of harmalol-CT DNA complex shows conformational changes with prominent CD perturbation and stabilization of CT DNA by 8 oC. Binding constant and stoichiometry was also calculated using the above biophysical techniques. Further, dose dependent apoptotic induction ability of harmalol was studied in HepG2 cells using different biochemical assays. Generation of ROS, DNA damage, changes in cellular external and ultramorphology, alteration of membrane, formation of comet tail, decreased mitochondrial membrane potential and a significant increase in Sub Go/G1 population made the cancer cell, HepG2, prone to apoptosis. Up regulation of p53 and caspase 3 further indicated the apoptotic role of harmalol.

Free and Open Source Licences, Software Programmers, and the Social Norm of Reciprocity

Over the past three decades, free and open source software (FOSS) programmers have developed new, innovative and legally binding licences that have in turn enabled the creation of innumerable pieces of everyday software, including Linux, Mozilla Firefox and Open Office. That FOSS has been highly successful in competing with 'closed source software' (e.g. Microsoft Office) is now undeniable, but in noting this success, it is important to examine in detail why this system of FOSS has been so successful. One key reason is the existence of networks or communities of programmers, who are bound together by a key shared social norm of 'reciprocity'. At the same time, these FOSS networks are not unitary – they are highly diverse and there are large divergences of opinion between members regarding which licences are generally preferable: some members favour the flexible ‘free’ or 'no copyleft' licences, such as BSD and MIT, while other members favour the ‘strong open’ or 'strong copyleft' licences such as GPL. This paper argues that without both the existence of the shared norm of reciprocity and the diversity of licences, it is unlikely that the innovative legal framework provided by FOSS would have succeeded to the extent that it has.

Evaluation of Antioxidant Activity as a Function of the Genetic Diversity of Canna indica Complex

Canna indica is a prominent species complex in tropical and subtropical areas. They become indigenous in Southeast Asia where they have been introduced. At present, C. indica complex comprises over hundred hybrids, are cultivated as commercial horticulture. The species complex contains starchy rhizome having economic value in terms of food and herbal medicine. In addition, bright color of the flowers makes it a valuable ornamental plant and potential source for natural colorant. This study aims to assess genetic diversity of four varieties of C. indica complex based on SRAP (sequence-related amplified polymorphism) and iPBS (inter primer binding site) markers. We also examined phytochemical characteristics and antioxidant properties of the flower extracts from four different color varieties. Results showed that despite of the genetic variation, there were no significant differences in phytochemical characteristics and antioxidant properties of flowers. The SRAP and iPBS results agree with the more primitive traits showed by morphological information and phytochemical and antioxidant characteristics from the flowers. Since Canna flowers has long been used as natural colorants together with the antioxidant activities from the ethanol extracts in this study, there are likely to be good source for cosmetics additives.

Resistance to Change as a Lever of Innovation: Case of Tangier, Tetouan and Hoceima Region, Morocco

For any company or organization, change must be natural and binding in order to evolve its business, protect its durability and remain competitive. "Adapt or disappear". But how often managers, leaders or employees develop astonishing ideas that could improve several aspects of the organization and the feedback is less that encouraging and people give unrealistic judgments just to escape change. In this paper, we are going to discuss what we do know about change and resistance to change and what we can do to tame this phenomenon and, above all, the main steps that can follow an idea man in the delicate and decisive implementation of innovations.

Biosynthesis of Titanium Dioxide Nanoparticles and Their Antibacterial Property

This paper presents a low-cost, eco-friendly and reproducible microbe mediated biosynthesis of TiO2 nanoparticles. TiO2 nanoparticles synthesized using the bacterium, Bacillus subtilis, from titanium as a precursor, were confirmed by TEM analysis. The morphological characteristics state spherical shape, with the size of individual or aggregate nanoparticles, around 30-40 nm. Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. Here, the antibacterial effect of TiO2 nanoparticles on Escherichia coli was investigated, which was confirmed by CFU (Colony-forming unit). Further, growth curve study of E. coli Hb101 in the presence and absence of TiO2 nanoparticles was done. Optical density decrease was observed with the increase in the concentration of TiO2. It could be attributed to the inactivation of cellular enzymes and DNA by binding to electron-donating groups such as carboxylates, amides, indoles, hydroxyls, thiols, etc. which cause little pores in bacterial cell walls, leading to increased permeability and cell death. This justifies that TiO2 nanoparticles have efficient antibacterial effect and have potential to be used as an antibacterial agent for different purposes.

Preparation, Characterisation, and Measurement of the in vitro Cytotoxicity of Mesoporous Silica Nanoparticles Loaded with Cytotoxic Pt(II) Oxadiazoline Complexes

Cytotoxic platinum compounds play a major role in the chemotherapy of a large number of human cancers. However, due to the severe side effects for the patient and other problems associated with their use, there is a need for the development of more efficient drugs and new methods for their selective delivery to the tumours. One way to achieve the latter could be in the use of nanoparticular substrates that can adsorb or chemically bind the drug. In the cell, the drug is supposed to be slowly released, either by physical desorption or by dissolution of the particle framework. Ideally, the cytotoxic properties of the platinum drug unfold only then, in the cancer cell and over a longer period of time due to the gradual release. In this paper, we report on our first steps in this direction. The binding properties of a series of cytotoxic Pt(II) oxadiazoline compounds to mesoporous silica particles has been studied by NMR and UV/vis spectroscopy. High loadings were achieved when the Pt(II) compound was relatively polar, and has been dissolved in a relatively nonpolar solvent before the silica was added. Typically, 6-10 hours were required for complete equilibration, suggesting the adsorption did not only occur to the outer surface but also to the interior of the pores. The untreated and Pt(II) loaded particles were characterised by C, H, N combustion analysis, BET/BJH nitrogen sorption, electron microscopy (REM and TEM) and EDX. With the latter methods we were able to demonstrate the homogenous distribution of the Pt(II) compound on and in the silica particles, and no Pt(II) bulk precipitate had formed. The in vitro cytotoxicity in a human cancer cell line (HeLa) has been determined for one of the new platinum compounds adsorbed to mesoporous silica particles of different size, and compared with the corresponding compound in solution. The IC50 data are similar in all cases, suggesting that the release of the Pt(II) compound was relatively fast and possibly occurred before the particles reached the cells. Overall, the platinum drug is chemically stable on silica and retained its activity upon prolonged storage.

Development of an Adhesive from Prosopis africana Seed Endosperm (Okpeyi)

This research work is an experimental study, through development of an adhesive from Prosopis africana endosperm. The prosopis seed for this work were obtained from Enugu State in the South East part of Nigeria. The seeds were prepared by separating the endosperm from the seed coat and cotyledon. Three methods were used to separate them, which are acidic method, roasting method and boiling method. 20g of seed were treated with different concentrations (25, 40, 55, 70, and 85% w/w) at 100°C and constant time (30 minutes), under continuous stirring with magnetic stirrer. Also 20g of seed were treated with sulphuric acid of concentrations 40% w/w at 100°C with different time (10, 15, 20, 25, 30 minutes), under continuous stirring with magnetic stirrer. Finally, 20g of seed were treated with sulphuric acid of concentrations 40% w/w at different temperature (20°C, 40°C, 60°C, 80°C, and 100°C) with constant time (30 minutes), under continuous stirring with magnetic stirrer. The whole endosperm extracted was adhesive. The physical properties of the adhesive were determined (appearance, odour, taste, solubility, pH, size, and binding strength). The percentage of the adhesive yield makes the commercialization of the seed in Nigeria possible and profitable. The very high viscosity attained at low concentrations makes prosopis adhesive an excellent thickener in the food industry.

Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation

Annihilations, phase shifts, scattering lengths and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wave function is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters, and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical and experimental results. Especially, the estimated positive scattering length supports the possibility of positronmagnesium bound state system that was confirmed in previous experimental and theoretical work.

Sorption of Charged Organic Dyes from Anionic Hydrogels

Hydrogels are three-dimensional, hydrophilic, polymeric networks composed of homopolymers or copolymers and are insoluble in water due to the presence of chemical or physical cross-links. When hydrogels come in contact with aqueous solutions, they can effectively sorb and retain the dissolved substances, depending on the nature of the monomeric units comprising the hydrogel. For this reason, hydrogels have been proposed in several studies as water purification agents. At the present work anionic hydrogels bearing negatively charged –COO- groups were prepared and investigated. These gels are based on sodium acrylate (ANa), either homopolymerized (poly(sodiumacrylate), PANa) or copolymerized (P(DMAM-co-ANa)) with N,N Dimethylacrylamide (DMAM). The hydrogels were used to extract some model organic dyes from water. It is found that cationic dyes are strongly sorbed and retained by the hydrogels, while sorption of anionic dyes was negligible. In all cases it was found that both maximum sorption capacity and equilibrium binding constant varied from one dye to the other depending on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. Finally, the nonionic hydrogel of the homopolymer poly(N,Ndimethylacrylamide), PDMAM, was also used for reasons of comparison.

Judicial Institutions in a Post-Conflict Society: Gaining Legitimacy through a Holistic Reform

This paper focuses on how judiciaries in post-conflict societies can gain legitimacy through reformation. Legitimacy plays a pivotal role in shaping people’s behavior to submit to the law and verifies the rightfulness of an organ for taking binding decisions. Among various dynamics, judicial independence, access to justice and behavioral changes of the judicial officials broadly contribute to legitimation of judiciary in general, and the courts in particular. Increasing independence of judiciary through reform limits, inter alia, government interference in judicial issues and protects basic rights of the citizens. Judicial independence does not only matter in institutional terms, individual independence also influences the impartiality and integrity of judges, which can be increased through education and better administration of justice. Finally, access to justice as an intertwined concept both at the legal and moral spectrum of judicial reform avails justice to the citizens and increases the level of public trust and confidence. Efficient legal decisions on fostering such elements through holistic reform create a rule of law atmosphere. Citizens neither accept an illegitimate judiciary nor do they trust its decisions. Lack of such tolerance and confidence deters the rule of law and thus, undermines the democratic development of a society.

Military Court’s Jurisdiction over Military Members Who Commit General Crimes under Indonesian Military Judiciary System in Comparison with Other Countries

The importance of this study is to understand how Indonesian military court asserts its jurisdiction over military members who commit general crimes within the Indonesian military judiciary system in comparison to other countries. This research employs a normative-juridical approach in combination with historical and comparative-juridical approaches. The research specification is analytical-descriptive in nature, i.e. describing or outlining the principles, basic concepts, and norms related to military judiciary system, which are further analyzed within the context of implementation and as the inputs for military justice regulation under the Indonesian legal system. Main data used in this research are secondary data, including primary, secondary and tertiary legal sources. The research focuses on secondary data, while primary data are supplementary in nature. The validity of data is checked using multi-methods commonly known as triangulation, i.e. to reflect the efforts to gain an in-depth understanding of phenomena being studied. Here, the military element is kept intact in the judiciary process with due observance of the Military Criminal Justice System and the Military Command Development Principle. The Indonesian military judiciary jurisdiction over military members committing general crimes is based on national legal system and global development while taking into account the structure, composition and position of military forces within the state structure. Jurisdiction is formulated by setting forth the substantive norm of crimes that are military in nature. At the level of adjudication jurisdiction, the military court has a jurisdiction to adjudicate military personnel who commit general offences. At the level of execution jurisdiction, the military court has a jurisdiction to execute the sentence against military members who have been convicted with a final and binding judgement. Military court's jurisdiction needs to be expanded when the country is in the state of war.

Removal of Aggregates of Monoclonal Antibodies by Ion Exchange Chromatography

The primary objective of this work was to study the effect of resin chemistry, pH and molarity of binding and elution buffer on aggregate removal using Cation Exchange Chromatography and find the optimum conditions which can give efficient aggregate removal with minimum loss of yield. Four different resins were used for carrying out the experiments: Fractogel EMD SO3 -(S), Fractogel EMD COO-(M), Capto SP ImpRes and S Ceramic HyperD. Runs were carried out on the AKTA Avant system. Design of Experiments (DOE) was used for analysis using the JMP software. The dependence of the yield obtained using different resins on the operating conditions was studied. Success has been achieved in obtaining yield greater than 90% using Capto SP ImpRes and Fractogel EMD COO-(M) resins. It has also been found that a change in the operating conditions generally has different effects on the yields obtained using different resins.

DNA Nanowires: A Charge Transfer Approach

Conductivity properties of DNA molecule is investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. This model is a tight-binding linear nanoscale chain. We have tried to study the electrical current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram.

The Toxicity of Doxorubicin with Nanotransporters

Doxorubicin (DOX) is an anthracycline drug used to treat many cancer diseases. Similarly to other cytostatic drugs, DOX has serious side effects; the biggest obstacle is the cardiotoxicity. With the aim of lowering the negative side effects and to target the DOX into the tumor tissue, the different nanoparticles (NPs) are studied. The aim of this work was to synthetized different NPs and conjugated them with DOX and determine the binding capacity of the NPs. For this experiment, carbon nanotubes (CNTs), graphene oxide (GO), fullerene (FUL) and liposomes (LIP) were used. The highest binding capacity was observed in GO (85%). Subsequently the toxicity of NPs and NPs-DOX conjugates was analyzed in in vivo system (chicken embryos). Some NPs (GO) can increase the toxicity of DOX, whereas other NPs (LIP, CNTs) decrease DOX toxicity.

Botswana and Nation-Building Theory

This paper argues nation-building theories that prioritize democratic governance best explain the successful postindependence development of Botswana. Three main competing schools of thought exist regarding the sequencing of policies that should occur to re-build weakened or failed states. The first posits that economic development should receive foremost attention, while democratization and a binding sense of nationalism can wait. A second group of experts identified constructing a sense of nationalism among a populace is necessary first, so that the state receives popular legitimacy and obedience that are prerequisites for development. Botswana, though, transitioned into a multi-party democracy and prosperous open economy due to the utilization of traditional democratic structures, enlightened and accountable leadership, and an educated technocratic civil service. With these political foundations already in place when the discovery of diamonds occurred, the resulting revenues were spent wisely on projects that grew the economy, improved basic living standards, and attracted foreign investment. Thus democratization preceded, and therefore provided an accountable basis for, economic development that might otherwise have been squandered by greedy and isolated elites to the detriment of the greater population. Botswana was one of the poorest nations in the world at the time of its independence in 1966, with little infrastructure, a dependence on apartheid South Africa for trade, and a largely subsistence economy. Over the next thirty years, though, its economy grew the fastest of any nation in the world. The transparent and judicious use of diamond returns is only a partial explanation, as the government also pursued economic diversification, mass education, and rural development in response to public needs. As nation-building has become a project undertaken by nations and multilateral agencies such as the United Nations and the North Atlantic Treaty Organization, Botswana may provide best practices that others should follow in attempting to reconstruct economically and politically unstable states.

Comparative DNA Binding of Iron and Manganese Complexes by Spectroscopic and ITC Techniques and Antibacterial Activity

Interaction of Schiff base complexes of Iron and Manganese: Iron [N, N’ Bis (5- (triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) chloride, [Fe Salen]Cl; Manganese [N, N’ Bis (5- (triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) acetate, were investigated by spectroscopic and isothermal titration calorimetry techniques (ITC). The absorbance spectra of complexes have shown hyper and hypochromism in the presence of DNA that is indication of interaction of complexes with DNA. The linear dichroism (LD) measurements confirmed the bending of DNA in the presence of complexes. Furthermore, Isothermal titration calorimetry experiments approved that complexes bound to DNA on the base of both electrostatic and hydrophobic interactions. More, ITC profile exhibits the existence of two binding phases for the complexes. Antibacterial activity of ligand and complexes were tested in vitro to evaluate their activity against the gram positive and negative bacteria.

In silico Studies on Selected Drug Targets for Combating Drug Resistance in Plasmodium falcifarum

With drug resistance becoming widespread in Plasmodium falciparum infections, the development of the alternative drugs is the desired strategy for prevention and cure of malaria. Three drug targets were selected to screen promising drug molecules from the GSK library of 13469 molecules. Using an in silico structure-based drug designing approach, the differences in binding energies of the substrate and inhibitor were exploited between target sites of parasite and human to design a drug molecule against Plasmodium. The docking studies have shown several promising molecules from GSK library with more effective binding as compared to the already known inhibitors for the drug targets. Though stronger interaction has been shown by several molecules as compared to the reference, few molecules have shown the potential as drug candidates though in vitro studies are required to validate the results. In case of thymidylate synthase-dihydrofolatereductase (TS-DHFR), three compounds have shown promise for future studies as potential drugs.

Comparative in silico and in vitro Study of N-(1- Methyl-2-Oxo-2-N-Methyl Anilino-Ethyl) Benzene Sulfonamide and Its Analogues as an Anticancer Agent

Doxorubicin, also known as Adriamycin, is an anthracycline class of drug used in cancer chemotherapy. It is used in the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute leukemia, breast cancer, lung cancer, endometrium cancer and ovary cancers. It functions via intercalating DNA and ultimately killing cancer cells. The major side effects of doxorubicin are hair loss, myelosuppression, nausea & vomiting, oesophagitis, diarrhea, heart damage and liver dysfunction. The minor modifications in the structure of compound exhibit large variation in the biological activity, has prompted us to carry out the synthesis of sulfonamide derivatives. Sulfonamide is an important feature with broad spectrum of biological activity such as antiviral, antifungal, diuretics, antiinflammatory, antibacterial and anticancer activities. Structure of the synthesized compound N-(1-methyl-2-oxo-2-N-methyl anilinoethyl) benzene sulfonamide confirmed by proton nuclear magnetic resonance (1H NMR),13C NMR, Mass and FTIR spectroscopic tools to assure the position of all protons and hence stereochemistry of the molecule. Further we have reported the binding potential of synthesized sulfonamide analogues in comparison to doxorubicin drug using Auto Dock 4.2 software. Computational binding energy (B.E.) and inhibitory constant (Ki) has been evaluated for the synthesized compound in comparison of doxorubicin against Poly (dA-dT).Poly (dA-dT) and Poly (dG-dC).Poly (dG-dC) sequences. The in vitro cytotoxic study against human breast cancer cell lines confirms the better anticancer activity of the synthesized compound over currently in use anticancer drug doxorubicin. The IC50 value of the synthesized compound is 7.12 μM whereas for doxorubicin is 7.2 μM.

Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination

In the scope of application of technical textiles, Non- Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitchfree method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxy-fluorination was used. The modification of carbonfibres by oxy-fluorination was investigated via scanning electron microscope, X-ray photoelectron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.