Component-based Segmentation of Words from Handwritten Arabic Text

Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words segmentation. Meanwhile, an improved projection based method is also employed for baseline detection. The proposed method has been successfully tested on IFN/ENIT database consisting of 26459 Arabic words handwritten by 411 different writers, and the results were promising and very encouraging in more accurate detection of the baseline and segmentation of words for further recognition.

Multimethod Approach to Research in Interlanguage Pragmatics

Argument over the use of particular method in interlanguage pragmatics has increased recently. Researchers argued the advantages and disadvantages of each method either natural or elicited. Findings of different studies indicated that the use of one method may not provide enough data to answer all its questions. The current study investigated the validity of using multimethod approach in interlanguage pragmatics to understand the development of requests in Arabic as a second language (Arabic L2). To this end, the study adopted two methods belong to two types of data sources: the institutional discourse (natural data), and the role play (elicited data). Participants were 117 learners of Arabic L2 at the university level, representing four levels (beginners, low-intermediate, highintermediate, and advanced). Results showed that using two or more methods in interlanguage pragmatics affect the size and nature of data.

Printed Arabic Sub-Word Recognition Using Moments

the cursive nature of the Arabic writing makes it difficult to accurately segment characters or even deal with the whole word efficiently. Therefore, in this paper, a printed Arabic sub-word recognition system is proposed. The suggested algorithm utilizes geometrical moments as descriptors for the separated sub-words. Three types of moments are investigated and applied to the printed sub-word images after dividing each image into multiple parts using windowing. Since moments are global descriptors, the windowing mechanism allows the moments to be applied to local regions of the sub-word. The local-global mixture of the proposed scheme increases the discrimination power of the moments while keeping the simplicity and ease of use of moments.

On Developing an Automatic Speech Recognition System for Standard Arabic Language

The Automatic Speech Recognition (ASR) applied to Arabic language is a challenging task. This is mainly related to the language specificities which make the researchers facing multiple difficulties such as the insufficient linguistic resources and the very limited number of available transcribed Arabic speech corpora. In this paper, we are interested in the development of a HMM-based ASR system for Standard Arabic (SA) language. Our fundamental research goal is to select the most appropriate acoustic parameters describing each audio frame, acoustic models and speech recognition unit. To achieve this purpose, we analyze the effect of varying frame windowing (size and period), acoustic parameter number resulting from features extraction methods traditionally used in ASR, speech recognition unit, Gaussian number per HMM state and number of embedded re-estimations of the Baum-Welch Algorithm. To evaluate the proposed ASR system, a multi-speaker SA connected-digits corpus is collected, transcribed and used throughout all experiments. A further evaluation is conducted on a speaker-independent continue SA speech corpus. The phonemes recognition rate is 94.02% which is relatively high when comparing it with another ASR system evaluated on the same corpus.

Comparison of Parameterization Methods in Recognizing Spoken Arabic Digits

This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization features: the Burg Spectrum Analysis, the Walsh Spectrum Analysis, the Thomson Multitaper Spectrum Analysis and the Mel Frequency Cepstral Coefficients (MFCC) features. The main aim of this paper was to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on the selected recognition features. The results acqired confirm that the use of MFCC features is a very promising method in recognizing Spoken Arabic digits.

A Novel Arabic Text Steganography Method Using Letter Points and Extensions

This paper presents a new steganography approach suitable for Arabic texts. It can be classified under steganography feature coding methods. The approach hides secret information bits within the letters benefiting from their inherited points. To note the specific letters holding secret bits, the scheme considers the two features, the existence of the points in the letters and the redundant Arabic extension character. We use the pointed letters with extension to hold the secret bit 'one' and the un-pointed letters with extension to hold 'zero'. This steganography technique is found attractive to other languages having similar texts to Arabic such as Persian and Urdu.

Comparing Arabic and Latin Handwritten Digits Recognition Problems

A comparison between the performance of Latin and Arabic handwritten digits recognition problems is presented. The performance of ten different classifiers is tested on two similar Arabic and Latin handwritten digits databases. The analysis shows that Arabic handwritten digits recognition problem is easier than that of Latin digits. This is because the interclass difference in case of Latin digits is smaller than in Arabic digits and variances in writing Latin digits are larger. Consequently, weaker yet fast classifiers are expected to play more prominent role in Arabic handwritten digits recognition.

Arabic and Islamic Education in Nigeria: The Case of Al-Majiri Schools

The AL-MAJIRI school system is a variant of private Arabic and Islamic schools which cater for the religious and moral development of Muslims. In the past, the system produced clerics, scholars, judges, religious reformers, eminent teachers and great men who are worthy of emulation, particularly in northern Nigeria. Gradually, the system lost its glory but continued to discharge its educational responsibilities to a certain extent. This paper takes a look at the activities of the AL-MAJIRI schools. The introduction provides background information about Nigeria where the schools operate. This is followed by an overview of the Nigerian educational system, the nature and the features of the AL-MAJIRI school system, its weaknesses and the current challenges facing the schools. The paper concludes with emphasis on the urgent need for a comprehensive reform of the curriculum content of the schools. The step by step procedure required for the reform is discussed.

Improving E-Government Services for Non- English Speaking Background (NESB) Communities in Australia

Australian government agencies have a natural desire to provide migrants a wide range of opportunities. Consequently, government online services should be equally available to migrants with a non-English speaking background (NESB). Despite the commendable efforts of governments and local agencies in Australia to provide such services, in reality, many NESB communities are not taking advantage of these services. This article–based on an extensive case study regarding the use of online government services by the Arabic NESB community in Australia–reports on the possible reasons for this issue, as well as suggestions for improvement. The conclusion is that Australia should implement ICT-based or e-government policies, programmes, and services that more accurately reflect migrant cultures and languages so that migrant integration can be more fully accomplished. Specifically, this article presents an NESB Model that adopts the value of usercentricity or a more individual-focused approach to government online services in Australia.

A New Recognition Scheme for Machine- Printed Arabic Texts based on Neural Networks

This paper presents a new approach to tackle the problem of recognizing machine-printed Arabic texts. Because of the difficulty of recognizing cursive Arabic words, the text has to be normalized and segmented to be ready for the recognition stage. The new scheme for recognizing Arabic characters depends on multiple parallel neural networks classifier. The classifier has two phases. The first phase categories the input character into one of eight groups. The second phase classifies the character into one of the Arabic character classes in the group. The system achieved high recognition rate.

Hybrid Method Using Wavelets and Predictive Method for Compression of Speech Signal

The development of the signal compression algorithms is having compressive progress. These algorithms are continuously improved by new tools and aim to reduce, an average, the number of bits necessary to the signal representation by means of minimizing the reconstruction error. The following article proposes the compression of Arabic speech signal by a hybrid method combining the wavelet transform and the linear prediction. The adopted approach rests, on one hand, on the original signal decomposition by ways of analysis filters, which is followed by the compression stage, and on the other hand, on the application of the order 5, as well as, the compression signal coefficients. The aim of this approach is the estimation of the predicted error, which will be coded and transmitted. The decoding operation is then used to reconstitute the original signal. Thus, the adequate choice of the bench of filters is useful to the transform in necessary to increase the compression rate and induce an impercevable distortion from an auditive point of view.

A New Vector Quantization Front-End Process for Discrete HMM Speech Recognition System

The paper presents a complete discrete statistical framework, based on a novel vector quantization (VQ) front-end process. This new VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means algorithm (K-means- DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system.

Recognition of Noisy Words Using the Time Delay Neural Networks Approach

This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.

Urdu Nastaleeq Optical Character Recognition

This paper discusses the Urdu script characteristics, Urdu Nastaleeq and a simple but a novel and robust technique to recognize the printed Urdu script without a lexicon. Urdu being a family of Arabic script is cursive and complex script in its nature, the main complexity of Urdu compound/connected text is not its connections but the forms/shapes the characters change when it is placed at initial, middle or at the end of a word. The characters recognition technique presented here is using the inherited complexity of Urdu script to solve the problem. A word is scanned and analyzed for the level of its complexity, the point where the level of complexity changes is marked for a character, segmented and feeded to Neural Networks. A prototype of the system has been tested on Urdu text and currently achieves 93.4% accuracy on the average.

A Hidden Markov Model-Based Isolated and Meaningful Hand Gesture Recognition

Gesture recognition is a challenging task for extracting meaningful gesture from continuous hand motion. In this paper, we propose an automatic system that recognizes isolated gesture, in addition meaningful gesture from continuous hand motion for Arabic numbers from 0 to 9 in real-time based on Hidden Markov Models (HMM). In order to handle isolated gesture, HMM using Ergodic, Left-Right (LR) and Left-Right Banded (LRB) topologies is applied over the discrete vector feature that is extracted from stereo color image sequences. These topologies are considered to different number of states ranging from 3 to 10. A new system is developed to recognize the meaningful gesture based on zero-codeword detection with static velocity motion for continuous gesture. Therefore, the LRB topology in conjunction with Baum-Welch (BW) algorithm for training and forward algorithm with Viterbi path for testing presents the best performance. Experimental results show that the proposed system can successfully recognize isolated and meaningful gesture and achieve average rate recognition 98.6% and 94.29% respectively.

Multi-Font Farsi/Arabic Isolated Character Recognition Using Chain Codes

Nowadays, OCR systems have got several applications and are increasingly employed in daily life. Much research has been done regarding the identification of Latin, Japanese, and Chinese characters. However, very little investigation has been performed regarding Farsi/Arabic characters recognition. Probably the reason is difficulty and complexity of those characters identification compared to the others and limitation of IT activities in Farsi and Arabic speaking countries. In this paper, a technique has been employed to identify isolated Farsi/Arabic characters. A chain code based algorithm along with other significant peculiarities such as number and location of dots and auxiliary parts, and the number of holes existing in the isolated character has been used in this study to identify Farsi/Arabic characters. Experimental results show the relatively high accuracy of the method developed when it is tested on several standard Farsi fonts.

An Efficient Feature Extraction Algorithm for the Recognition of Handwritten Arabic Digits

In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed. After reading the digit from the user, the slope is estimated and normalized for adjacent nodes. Based on the changing of signs of the slope values, the primitives are identified and extracted. The names of these primitives are represented by strings, and then a finite state machine, which contains the grammars of the digits, is traced to identify the digit. Finally, if there is any ambiguity, it will be resolved. Experiments showed that this technique is flexible and can achieve high recognition accuracy for the shapes of the digits represented in this work.

Some Laws of Rhythm Formulas of Ussuli in the Dancing Culture of People in the Middle and the Central Asia

In the national and professional music of oral tradition of many people in the East there is the metric formula called “ussuli", that is to say rhythmic constructions of different character and a composition. Ussuli in translation from Arabic means the law. The cultural contacts of the ancient and medieval inhabitants of the Central Asia, India, China, East Turkestan, Iraq, Afghanistan, Turkey, and Iran have played a certain role in formation of both musical and dancing heritage of each of these people. During theatrical shows many dances were performed under the accompaniment of percussion instruments as nagra, dayulpaz, doll. The abovementioned tools are used as the obligatory accompanying tool in an orchestra and at support of dancing acts as the solo tool. Dynamics of development of a dancing composition, at times execution of technique of movement depends on various combinations of ussuli and their receptions of execution.

Efficient System for Speech Recognition using General Regression Neural Network

In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.

Intelligent Mobile Search Oriented to Global e-Commerce

In this paper we propose a novel approach for searching eCommerce products using a mobile phone, illustrated by a prototype eCoMobile. This approach aims to globalize the mobile search by integrating the concept of user multilinguism into it. To show that, we particularly deal with English and Arabic languages. Indeed the mobile user can formulate his query on a commercial product in either language (English/Arabic). The description of his information need on commercial products relies on the ontology that represents the conceptualization of the product catalogue knowledge domain defined in both English and Arabic languages. A query expressed on a mobile device client defines the concept that corresponds to the name of the product followed by a set of pairs (property, value) specifying the characteristics of the product. Once a query is submitted it is then communicated to the server side which analyses it and in its turn performs an http request to an eCommerce application server (like Amazon). This latter responds by returning an XML file representing a set of elements where each element defines an item of the searched product with its specific characteristics. The XML file is analyzed on the server side and then items are displayed on the mobile device client along with its relevant characteristics in the chosen language.