A Scenario Oriented Supplier Selection by Considering a Multi Tier Supplier Network

One of the main processes of supply chain management is supplier selection process which its accurate implementation can dramatically increase company competitiveness. In presented article model developed based on the features of second tiers suppliers and four scenarios are predicted in order to help the decision maker (DM) in making up his/her mind. In addition two tiers of suppliers have been considered as a chain of suppliers. Then the proposed approach is solved by a method combined of concepts of fuzzy set theory (FST) and linear programming (LP) which has been nourished by real data extracted from an engineering design and supplying parts company. At the end results reveal the high importance of considering second tier suppliers features as criteria for selecting the best supplier.

Business Rules for Data Warehouse

Business rules and data warehouse are concepts and technologies that impact a wide variety of organizational tasks. In general, each area has evolved independently, impacting application development and decision-making. Generating knowledge from data warehouse is a complex process. This paper outlines an approach to ease import of information and knowledge from a data warehouse star schema through an inference class of business rules. The paper utilizes the Oracle database for illustrating the working of the concepts. The star schema structure and the business rules are stored within a relational database. The approach is explained through a prototype in Oracle-s PL/SQL Server Pages.

Migration among Multicities

This paper proposes a simple model of economic geography within the Dixit-Stiglitz-Iceberg framework that may be used to analyze migration patterns among three cities. The cost–benefit tradeoffs affecting incentives for three types of migration, including echelon migration, are discussed. This paper develops a tractable, heterogeneous-agent, general equilibrium model, where agents share constant human capital, and explores the relationship between the benefits of echelon migration and gross human capital. Using Chinese numerical solutions, we study the manifestation of echelon migration and how it responds to changes in transportation cost and elasticity of substitution. Numerical results demonstrate that (i) there are positive relationships between a migration-s benefit-and-wage ratio, (ii) there are positive relationships between gross human capital ratios and wage ratios as to origin and destination, and (iii) we identify 13 varieties of human capital convergence among cities. In particular, this model predicts population shock resulting from the processes of migration choice and echelon migration.

Analytical Solution for Free Vibration of Rectangular Kirchhoff Plate from Wave Approach

In this paper, an analytical approach for free vibration analysis of four edges simply supported rectangular Kirchhoff plates is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for plate with simply supported boundary condition are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of a simply supported rectangular Kirchhoff plate. Subsequently, the eigenvalue problem for free vibration of plates is formulated and the equation of plate natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.

Assessment of Cadmium Level in Water from Watershed of the Kowsar Dam

The Kowsar dam supply water for different usages such as drinking, industrial, agricultural and aquaculture farms usages and located next to the city of Dehdashat in Kohgiluye and Boyerahmad province in southern Iran. There are some towns and villages on the Kowsar dam watersheds, which Dehdasht and Choram are the most important and populated cities in this area. The study was undertaken to assess the status of water quality in the urban areas of the Kowsar dam. A total of 28 water samples were collected from 6 stations on surface water and 1 station from groundwater on the watershed of the Kowsar dam. All the samples were analyzed for Cd concentration using standard procedures. The results were compared with other national and international standards. Among the analyzed samples, as the maximum value of cadmium (1.131 μg/L) was observed on the station 2 at the winter 2009, all the samples analyzed were within the maximum admissible limits by the United States Environmental Protection Agency, EU, WHO, New Zealand , Australian, Iranian, and the Indian standards. In general results of the present study have shown that Cd mean values of stations No. 4, 1 and 2 with 0.5135, 0.0.4733 and 0.4573 μg/L respectively are higher than the other stations . Although Cd level of all samples and stations have had normal values but this is an indication of pollution potential and hazards because of human activity and waste water of towns in the areas, which can effect on human health implications in future. This research, therefore, recommends the government and other responsible authorities to take suitable improving measures in the Kowsar dam watershed-s.

Evaluation of Beauveria bassiana Spore Compatibility with Surfactants

The spores of entomopathogenic fungi, Beauveria bassiana was evaluated for their compatibility with four surfactants; SDS (sodium dodyl sulphate) and CABS-65 (calcium alkyl benzene sulphonate), Tween 20 (polyethylene sorbitan monolaureate) and Tween 80 (polyoxyethylene sorbitan monoleate) at six different concentrations (0.1%, 0.5%, 1%, 2.5%, 5% and 10%). Incubated spores showed decrease in concentrations due to conversion of spores to hyphae. The maximum germination recorded in 72 h incubated spores varied with surfactant concentration at 49-68% (SDS), 39- 53% (CABS), 78-92% (Tween 80) and 80-92% (Tween 20), while the optimal surfactant concentration for spore germination was found to be 2.5-5%. The surfactant effect on spores was more pronounced with SDS and CABS-65, where significant deterioration and loss in viability of the incubated spores was observed. The effect of Tween 20 and Tween 80 were comparatively less inhibiting. The results of the study would help in surfactant selection for B. bassiana emulsion preparation.

Fuzzy Control of the Air Conditioning System at Different Operating Pressures

The present work demonstrates the design and simulation of a fuzzy control of an air conditioning system at different pressures. The first order Sugeno fuzzy inference system is utilized to model the system and create the controller. In addition, an estimation of the heat transfer rate and water mass flow rate injection into or withdraw from the air conditioning system is determined by the fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm along with least square estimation (LSE) generates the fuzzy rules that describe the relationship between input/output data. The fuzzy rules are tuned by Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that when the pressure increases the amount of water flow rate and heat transfer rate decrease within the lower ranges of inlet dry bulb temperatures. On the other hand, and as pressure increases the amount of water flow rate and heat transfer rate increases within the higher ranges of inlet dry bulb temperatures. The inflection in the pressure effect trend occurs at lower temperatures as the inlet air humidity increases.

A Monte Carlo Method to Data Stream Analysis

Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.

XPM Response of Multiple Quantum Well chirped DFB-SOA All Optical Flip-Flop Switching

In this paper, based on the coupled-mode and carrier rate equations, derivation of a dynamic model and numerically analysis of a MQW chirped DFB-SOA all-optical flip-flop is done precisely. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the DFB-SOA all optical flip flop. We have shown that strained MQW active region in under an optimized condition into a DFB-SOA with chirped grating can improve the switching ON speed limitation in such a of the device, significantly while the fall time is increased. The values of the rise times for such an all optical flip-flop, are obtained in an optimized condition, areas tr=255ps.

An investigation on the Effect of Continuous Phase Height on the First and Second Critical Rotor Speeds in a Rotary Disc Contactor

A Rotary Disc Contactor with inner diameter of 9.1cm and maximum operating height of 40cm has been used to investigate break up phenomenon. Water-Toluene, Water as continuous phase and Toluene as dispersed phase, was selected as chemical system in the experiments. The mentioned chemical system has high interfacial tension so it was possible to form big drops which permit accurate investigation on break up phenomenon as well as the first and second critical rotor speeds. In this study, Break up phenomenon has been studied as a function of mother drop size, rotor speed and continuous phase height. Further more; the effects of mother drop size and continuous phase height on the first and second critical rotor speeds were investigated. Finally, two modified correlations were proposed to estimate the first and second critical speeds.

Ezilla Cloud Service with Cassandra Database for Sensor Observation System

The main mission of Ezilla is to provide a friendly interface to access the virtual machine and quickly deploy the high performance computing environment. Ezilla has been developed by Pervasive Computing Team at National Center for High-performance Computing (NCHC). Ezilla integrates the Cloud middleware, virtualization technology, and Web-based Operating System (WebOS) to form a virtual computer in distributed computing environment. In order to upgrade the dataset and speedup, we proposed the sensor observation system to deal with a huge amount of data in the Cassandra database. The sensor observation system is based on the Ezilla to store sensor raw data into distributed database. We adopt the Ezilla Cloud service to create virtual machines and login into virtual machine to deploy the sensor observation system. Integrating the sensor observation system with Ezilla is to quickly deploy experiment environment and access a huge amount of data with distributed database that support the replication mechanism to protect the data security.

Signal-to-Noise Ratio Improvement of EMCCD Cameras

Over the past years, the EMCCD has had a profound influence on photon starved imaging applications relying on its unique multiplication register based on the impact ionization effect in the silicon. High signal-to-noise ratio (SNR) means high image quality. Thus, SNR improvement is important for the EMCCD. This work analyzes the SNR performance of an EMCCD with gain off and on. In each mode, simplified SNR models are established for different integration times. The SNR curves are divided into readout noise (or CIC) region and shot noise region by integration time. Theoretical SNR values comparing long frame integration and frame adding in each region are presented and discussed to figure out which method is more effective. In order to further improve the SNR performance, pixel binning is introduced into the EMCCD. The results show that pixel binning does obviously improve the SNR performance, but at the expensive of the spatial resolution.

Adsorption Capacity of Chitosan Beads in Toxic Solutions

The efficiency of chitosan beads processed from 4 marine animal shells; white leg shrimp (Litopenaeus vannamei), mud crab (Scylla sp.), horseshoe crab (Carcinoscorpius rotundicauda), and cuttlefish bone (Sepia sp.), for the adsorption experiments of ammonia and formaldehyde were investigated. The porosities of chitosan from the shells looked like beads were distinctly examined under SEM. The original pores of those shells on the surface areas compose of evenly fine pores. The shell beads of cuttlefish bone and horseshoe crab show the larger probably even porosity, while on those white leg shrimp and mud crab contain various large and fine pores. The best adsorption at pH 9 in 18 mg/l ammonia at 2 hours yield on cuttlefish bone, horseshoe crab, mud crab and white leg shrimp with the average percent of 59.12, 51.45, 45.66 and 43.52, respectively. Within 30 minutes the formaldehyde absorbers (at pH 5 in 8 μg/ml) revealed 46.27, 26.56, and 18.04 percent capacities in cuttlefish bone, mud crab and white leg shrimp beads; while 22.44 percent in the horseshoe crab at pH 7. The adsorption capacities and the amounts of beads showed a positive correlation. The adsorption capacity relationship between pH and the gas concentrations were affected by these qualities of chitosan beads.

Forming of Institutional Mechanism of Region's Innovative Development

The regional innovative competitiveness is an integrating characteristic of the innovative sphere of the region. It depends on a big variety of different parameters connected with all kinds of economic entities- activities. But management parameters shouldn't be irregular, so in order to avoid it, an institutional system should be formed. This system should carry out strategic management of factors having the greatest influence on the region's innovative development. This article is devoted to different aspects of organization of the region's development institutional mechanism, which is based on management of regional innovative competitiveness parameters. The base of the analysis is innovatively-active Russian regions which were compared according to the level of the innovative competitiveness. After that the most important parameters of successful innovative development of the region were revealed with the help of the correlation-regression analysis. The results of the research could be used for investigation of the region's innovative policy.

Faults Forecasting System

This paper presents Faults Forecasting System (FFS) that utilizes statistical forecasting techniques in analyzing process variables data in order to forecast faults occurrences. FFS is proposing new idea in detecting faults. Current techniques used in faults detection are based on analyzing the current status of the system variables in order to check if the current status is fault or not. FFS is using forecasting techniques to predict future timing for faults before it happens. Proposed model is applying subset modeling strategy and Bayesian approach in order to decrease dimensionality of the process variables and improve faults forecasting accuracy. A practical experiment, designed and implemented in Okayama University, Japan, is implemented, and the comparison shows that our proposed model is showing high forecasting accuracy and BEFORE-TIME.

The Role of Faith-based Organizations in Building Democratic Process: Achieving Universal Primary Education in Sierra Leone

This paper aims to argue that religion and Faith-based Organizations (FBOs) contribute to building democratic process through the provision of education in Sierra Leone. Sierra Leone experienced a civil war from 1991 to 2002 and about 70 percent of the population lives in poverty. While the government has been in the process of rebuilding the nation, many forms of Civil Society Organizations (CSOs), including FBOs, have played a significant role in promoting social development. Education plays an important role in supporting people-s democratic movements through knowledge acquisition, spiritual enlightenment and empowerment. This paper discusses religious tolerance in Sierra Leone and how FBOs have contributed to the provision of primary education in Sierra Leone. This study is based on the author-s field research, which involved interviews with teachers and development stakeholders, notably government officials, Non-governmental Organizations (NGOs) and FBOs, as well as questionnaires completed by pupils, parents and teachers.

Genetic Polymorphism of Main Lactoproteins of Romanian Grey Steppe Breed in Preservation

The paper presents a part of the results obtained in a complex research project on Romanian Grey Steppe breed, owner of some remarkable qualities such as hardiness, longevity, adaptability, special resistance to ban weather and diseases and included in the genetic fund (G.D. no. 822/2008.) from Romania. Following the researches effectuated, we identified alleles of six loci, codifying the six types of major milk proteins: alpha-casein S1 (α S1-cz); beta-casein (β-cz); kappa-casein (K-cz); beta-lactoglobulin (β-lg); alpha-lactalbumin (α-la) and alpha-casein S2 (α S2-cz). In system αS1-cz allele αs1-Cn B has the highest frequency (0.700), in system β-cz allele β-Cn A2 ( 0.550 ), in system K-cz allele k-CnA2 ( 0.583 ) and heterozygote genotype AB ( 0.416 ) and BB (0.375), in system β-lg allele β-lgA1 has the highest frequency (0.542 ) and heterozygote genotype AB ( 0.500 ), in system α-la there is monomorphism for allele α-la B and similarly in system αS2-cz for allele αs2-Cn A. The milk analysis by the isoelectric focalization technique (I.E.F.) allowed the identification of a new allele for locus αS1-casein, for two of the individuals under analysis, namely allele called αS1-casein IRV. When experiments were repeated, we noticed that this is not a proteolysis band and it really was a new allele that has not been registered in the specialized literature so far. We identified two heterozygote individuals, carriers of this allele, namely: BIRV and CIRV. This discovery is extremely important if focus is laid on the national genetic patrimony.

Energy Consumption in Forward Osmosis Desalination Compared to other Desalination Techniques

The draw solute separation process in Forward Osmosis desalination was simulated in Aspen Plus chemical process modeling software, to estimate the energy consumption and compare it with other desalination processes, mainly the Reverse Osmosis process which is currently most prevalent. The electrolytic chemistry for the system was retrieved using the Elec – NRTL property method in the Aspen Plus database. Electrical equivalent of energy required in the Forward Osmosis desalination technique was estimated and compared with the prevalent desalination techniques.

Closed Form Optimal Solution of a Tuned Liquid Column Damper Responding to Earthquake

In this paper the vibration behaviors of a structure equipped with a tuned liquid column damper (TLCD) under a harmonic type of earthquake loading are studied. However, due to inherent nonlinear liquid damping, it is no doubt that a great deal of computational effort is required to search the optimum parameters of the TLCD, numerically. Therefore by linearization the equation of motion of the single degree of freedom structure equipped with the TLCD, the closed form solutions of the TLCD-structure system are derived. To find the reliability of the analytical method, the results have been compared with other researcher and have good agreement. Further, the effects of optimal design parameters such as length ratio and mass ratio on the performance of the TLCD for controlling the responses of a structure are investigated by using the harmonic type of earthquake excitation. Finally, the Citicorp Center which has a very flexible structure is used as an example to illustrate the design procedure for the TLCD under the earthquake excitation.

A Multiresolution Approach for Noised Texture Classification based on the Co-occurrence Matrix and First Order Statistics

Wavelet transform provides several important characteristics which can be used in a texture analysis and classification. In this work, an efficient texture classification method, which combines concepts from wavelet and co-occurrence matrices, is presented. An Euclidian distance classifier is used to evaluate the various methods of classification. A comparative study is essential to determine the ideal method. Using this conjecture, we developed a novel feature set for texture classification and demonstrate its effectiveness