Fragile Watermarking for Color Images Using Thresholding Technique

In this paper, we propose ablock-wise watermarking scheme for color image authentication to resist malicious tampering of digital media. The thresholding technique is incorporated into the scheme such that the tampered region of the color image can be recovered with high quality while the proofing result is obtained. The watermark for each block consists of its dual authentication data and the corresponding feature information. The feature information for recovery iscomputed bythe thresholding technique. In the proofing process, we propose a dual-option parity check method to proof the validity of image blocks. In the recovery process, the feature information of each block embedded into the color image is rebuilt for high quality recovery. The simulation results show that the proposed watermarking scheme can effectively proof the tempered region with high detection rate and can recover the tempered region with high quality.

Process-Oriented Learning Requirements for Employees and for Organizations

Using activity theory, organisational theory and didactics as theoretical foundations, a comprehensive model of the organisational dimensions relevant for learning and knowledge transfer will be developed. In a second step, a Learning Assessment Guideline will be elaborated. This guideline will be designed to permit a targeted analysis of organisations to identify the status quo in those areas crucial to the implementation of learning and knowledge transfer. In addition, this self-analysis tool will enable learning managers to select adequate didactic models for e- and blended learning. As part of the European Integrated Project "Process-oriented Learning and Information Exchange" (PROLIX), this model of organisational prerequisites for learning and knowledge transfer will be empirically tested in four profit and non-profit organisations in Great Britain, Germany and France (to be finalized in autumn 2006). The findings concern not only the capability of the model of organisational dimensions, but also the predominant perceptions of and obstacles to learning in organisations.

Fingerprint Compression Using Multiwavelets

Large volumes of fingerprints are collected and stored every day in a wide range of applications, including forensics, access control etc. It is evident from the database of Federal Bureau of Investigation (FBI) which contains more than 70 million finger prints. Compression of this database is very important because of this high Volume. The performance of existing image coding standards generally degrades at low bit-rates because of the underlying block based Discrete Cosine Transform (DCT) scheme. Over the past decade, the success of wavelets in solving many different problems has contributed to its unprecedented popularity. Due to implementation constraints scalar wavelets do not posses all the properties which are needed for better performance in compression. New class of wavelets called 'Multiwavelets' which posses more than one scaling filters overcomes this problem. The objective of this paper is to develop an efficient compression scheme and to obtain better quality and higher compression ratio through multiwavelet transform and embedded coding of multiwavelet coefficients through Set Partitioning In Hierarchical Trees algorithm (SPIHT) algorithm. A comparison of the best known multiwavelets is made to the best known scalar wavelets. Both quantitative and qualitative measures of performance are examined for Fingerprints.

SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis

Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.

Strategies of Entrepreneurs to Collaborate with Alliances for Commercializing Technology and New Product Innovation: A Practical Learning in Thailand

This paper provides a key driver-based conceptual framework that can be used to improve a firm-s success in commercializing technology and in new product innovation resulting from collaboration with other organizations through strategic alliances. Based on a qualitative study using an interview approach, strategic alliances of entrepreneurs in the food processing industry in Thailand are explored. This paper describes factors affecting decisions to collaborate through alliances. It identifies four issues: maintaining the efficiency of the value chain for production capability, adapting to present and future competition, careful assessment of value of outcomes, and management of innovation. We consider five driving factors: resource orientation, assessment of risk, business opportunity, sharing of benefits and confidence in alliance partners. These factors will be of interest to entrepreneurs and policy makers with regard to further understanding of the direction of business strategies.

Study of Heat Transfer in the Poly Ethylene Fluidized Bed Reactor Numerically and Experimentally

In this research, heat transfer of a poly Ethylene fluidized bed reactor without reaction were studied experimentally and computationally at different superficial gas velocities. A multifluid Eulerian computational model incorporating the kinetic theory for solid particles was developed and used to simulate the heat conducting gas–solid flows in a fluidized bed configuration. Momentum exchange coefficients were evaluated using the Syamlal– O-Brien drag functions. Temperature distributions of different phases in the reactor were also computed. Good agreement was found between the model predictions and the experimentally obtained data for the bed expansion ratio as well as the qualitative gas–solid flow patterns. The simulation and experimental results showed that the gas temperature decreases as it moves upward in the reactor, while the solid particle temperature increases. Pressure drop and temperature distribution predicted by the simulations were in good agreement with the experimental measurements at superficial gas velocities higher than the minimum fluidization velocity. Also, the predicted time-average local voidage profiles were in reasonable agreement with the experimental results. The study showed that the computational model was capable of predicting the heat transfer and the hydrodynamic behavior of gas-solid fluidized bed flows with reasonable accuracy.

Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Simulation of the Temperature and Heat Gain by Solar Parabolic Trough Collector in Algeria

The objectif of the present work is to determinate the potential of the solar parabolic trough collector (PTC) for use in the design of a solar thermal power plant in Algeria. The study is based on a mathematical modeling of the PTC. Heat balance has been established respectively on the heat transfer fluid (HTF), the absorber tube and the glass envelop using the principle of energy conservation at each surface of the HCE cross-sectionn. The modified Euler method is used to solve the obtained differential equations. At first the results for typical days of two seasons the thermal behavior of the HTF, the absorber and the envelope are obtained. Then to determine the thermal performances of the heat transfer fluid, different oils are considered and their temperature and heat gain evolutions compared.

The Influencing Factors and the Approach to Enhance the Standard of E-Commerce for Small and Medium Enterprises in Bangkok

The objectives of this research paper were to study the influencing factors that contributed to the success of electronic commerce (e-commerce) and to study the approach to enhance the standard of e-commerce for small and medium enterprises (SME). The research paper focused the study on only sole proprietorship SMEs in Bangkok, Thailand. The factors contributed to the success of SME included business management, learning in the organization, business collaboration, and the quality of website. A quantitative and qualitative mixed research methodology was used. In terms of quantitative method, a questionnaire was used to collect data from 251 sole proprietorships. The System Equation Model (SEM) was utilized as the tool for data analysis. In terms of qualitative method, an in-depth interview, a dialogue with experts in the field of ecommerce for SMEs, and content analysis were used. By using the adjusted causal relationship structure model, it was revealed that the factors affecting the success of e-commerce for SMEs were found to be congruent with the empirical data. The hypothesis testing indicated that business management influenced the learning in the organization, the learning in the organization influenced business collaboration and the quality of the website, and these factors, in turn, influenced the success of SMEs. Moreover, the approach to enhance the standard of SMEs revealed that the majority of respondents wanted to enhance the standard of SMEs to a high level in the category of safety of e-commerce system, basic structure of e-commerce, development of staff potentials, assistance of budget and tax reduction, and law improvement regarding the e-commerce respectively.

Efficient STAKCERT KDD Processes in Worm Detection

This paper presents a new STAKCERT KDD processes for worm detection. The enhancement introduced in the data-preprocessing resulted in the formation of a new STAKCERT model for worm detection. In this paper we explained in detail how all the processes involved in the STAKCERT KDD processes are applied within the STAKCERT model for worm detection. Based on the experiment conducted, the STAKCERT model yielded a 98.13% accuracy rate for worm detection by integrating the STAKCERT KDD processes.

Low Resolution Single Neural Network Based Face Recognition

This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.

Diagnosis of Hate Schemas in Prisoners with Antisocial Personality Disorder (ASPD)

The aim of this study is to show innovative techniques that describe the effectiveness of individuals diagnosed with antisocial personality disorders (ASPD). The author presents information about hate schemas regarding persons with ASPD and their understanding of the role of hate. The data of 60 prisoners with ASPD, 40 prisoners without ASPD, and 60 men without antisocial tendencies, has been analyzed. The participants were asked to describe their hate inspired by a photograph. The narrative discourse was analyzed, the three groups were compared. The results show the differences between the inmates with ASPD, those without ASPD, and the controls. The antisocial individuals describe hate as an ambivalent feeling with low emotional intensity, i.e., actors (in stories) are presented more as positives than as partners. They use different mechanisms to keep them from understanding the meaning of the emotional situation. The schema's characteristics were expressed in narratives attributed to high Psychopathy.

Modeling of CO2 Removal from Gas Mixtureby 2-amino-2-methyl-1-propanol (AMP) Using the Modified Kent Eisenberg Model

In this paper, the solubility of CO2 in AMP solution have been measured at temperature range of ( 293, 303 ,313,323) K.The amine concentration ranges studied are (2.0, 2.8, and 3.4) M. A solubility apparatus was used to measure the solubility of CO2 in AMP solution on samples of flue gases from Thermal and Central Power Plants of Esfahan Steel Company. The modified Kent Eisenberg model was used to correlate and predict the vapor-liquid equilibria of the (CO2 + AMP + H2O) system. The model predicted results are in good agreement with the experimental vapor-liquid equilibrium measurements.

Predicting Protein Interaction Sites Based on a New Integrated Radial Basis Functional Neural Network

Interactions among proteins are the basis of various life events. So, it is important to recognize and research protein interaction sites. A control set that contains 149 protein molecules were used here. Then 10 features were extracted and 4 sample sets that contained 9 sliding windows were made according to features. These 4 sample sets were calculated by Radial Basis Functional neutral networks which were optimized by Particle Swarm Optimization respectively. Then 4 groups of results were obtained. Finally, these 4 groups of results were integrated by decision fusion (DF) and Genetic Algorithm based Selected Ensemble (GASEN). A better accuracy was got by DF and GASEN. So, the integrated methods were proved to be effective.

Self-efficacy, Self-reliance, and Motivation inan Asynchronous Learning Environment

Self-efficacy, self-reliance, and motivation were examined in a quasi-experimental study with 178 sophomore university students. Participants used an interactive cardiovascular anatomy and physiology CD-ROM, and completed a 15-item questionnaire. Reliability of the questionnaire was established using Cronbach-s alpha. Post-tests and course grades were examined using a t-test, demonstrating no significance. Results of an item-to-item analysis of the questionnaire showed overall satisfaction with the teaching methodology and varied results for self-efficacy, selfreliance, and motivation. Kendall-s Tau was calculated for all items in the questionnaire.

Bioengineering for Customized Orthodontic Applications- Implant, Bracket and Dental Vibrator

To understand complex living system an effort has made by mechanical engineers and dentists to deliver prompt products and services to patients concerned about their aesthetic look. Since two decades various bracket systems have designed involving techniques like milling, injection molding which are technically not flexible for the customized dental product development. The aim of this paper to design, develop a customized system which is economical and mainly emphasizes the expertise design and integration of engineering and dental fields. A custom made selfadjustable lingual bracket and customized implants are designed and developed using computer aided design (CAD) and rapid prototyping technology (RPT) to improve the smiles and to overcome the difficulties associated with conventional ones. Lengthy orthodontic treatment usually not accepted by the patients because the patient compliance is lost. Patient-s compliance can be improved by facilitating faster tooth movements by designing a localized dental vibrator using advanced engineering principles.

Innovation to Protect the Smoke and Odor Pollutions in Benjarong Ceramic Production

The improvement of a filer case utilized to purify the let-out smoke and smell in the production of Benjarong Ceramic is studied through Participatory Action Research (PAR). This research is aimed to protect smell, dirty smoke, and air pollution which are effects of incomplete combustion in the production of Benjarong ceramic. This research was conducted at Jongjint Benjarong Ceramic Factory in Plai Bang, Bang Kruai, Nonthaburi Province,Thailand, also 12 employees were interviewed for data collection. All collected data were analyzed to develop and create solution to protect smoke and smell pollution from Benjarong ceramic production. The results revealed that the employees who have used the developed filer cases are moderately satisfied. In addition to the efficiency of developed smoke-and-smell filer cases, it was found that Overall, the respondents were satisfied moderately with efficiency of modified smoke and smell filter cases.

Critical Points of Prefabricated Reinforced Concrete Wall Systems of Multi-storey Buildings

With respect to the dissipation of energy through plastic deformation of joints of prefabricated wall units, the paper points out the principal importance of efficient reinforcement of the prefabricated system at its joints. The method, quality and amount of reinforcement are essential for reaching the necessary degree of joint ductility. The paper presents partial results of experimental research of vertical joints of prefabricated units exposed to monotonously rising loading and repetitive shear force and formulates a conclusion that the limit state of the structure as a whole is preceded by the disintegration of joints, or that the structure tends to pass from linearly elastic behaviour to non-linearly elastic to plastic behaviour by exceeding the proportional elastic limit in joints.Experimental verification on a model of a 7-storey prefabricated structure revealed weak points in its load-bearing systems, mainly at places of critical points around openings situated in close proximity to vertical joints of mutually perpendicularly oriented walls.

Social Media and Counseling: Opportunities, Risks and Ethical Considerations

The purpose of this article is to briefly review the opportunities that social media present to counselors and psychologists. Particular attention was given to understanding some of the more important common risks inherent in social media and the potential ethical dilemmas which may arise for counselors and psychologists who embrace them in their practice. Key considerations of issues pertinent to an online presence such as multiple relationships, visibility and privacy, maintaining ethical principles and professional boundaries are being discussed.

A Sociocybernetics Data Analysis Using Causality in Tourism Networks

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.