Experimental Study on Machinability of Laser- Sintered Material in Ball End Milling

This paper presents an experimental investigation on the machinability of laser-sintered material using small ball end mill focusing on wear mechanisms. Laser-sintered material was produced by irradiating a laser beam on a layer of loose fine SCM-Ni-Cu powder. Bulk carbon steel JIS S55C was selected as a reference steel. The effects of powder consolidation mechanisms and unsintered powder on the tool life and wear mechanisms were carried out. Results indicated that tool life in cutting laser-sintered material is lower than that in cutting JIS S55C. Adhesion of the work material and chipping were the main wear mechanisms of the ball end mill in cutting laser-sintered material. Cutting with the unsintered powder surrounding the tool and laser-sintered material had caused major fracture on the cutting edge.

A Discrete Filtering Algorithm for Impulse Wave Parameter Estimation

This paper presents a new method for estimating the mean curve of impulse voltage waveforms that are recorded during impulse tests. In practice, these waveforms are distorted by noise, oscillations and overshoot. The problem is formulated as an estimation problem. Estimation of the current signal parameters is achieved using a fast and accurate technique. The method is based on discrete dynamic filtering algorithm (DDF). The main advantage of the proposed technique is its ability in producing the estimates in a very short time and at a very high degree of accuracy. The algorithm uses sets of digital samples of the recorded impulse waveform. The proposed technique has been tested using simulated data of practical waveforms. Effects of number of samples and data window size are studied. Results are reported and discussed.

Effects of Geometry of Disk Openers on Seed Slot Properties

Offset Double-Disk Opener (DDO) is a popular furrow opener in conservation tillage. It has some limitations such as negative suction to penetrate in the soil, hair pinning and mixing seed and fertilizer in the slot. Because of importance of separation of seed and fertilizer in the slot, by adding two horizontal mini disks to DDO a modified opener was made (MDO) which placed the fertilizer between and under two rows of seed. To consider performance of novel opener an indoor comparison test between DDO and MDO was performed at soil bin. The experiment was conducted with three working speeds (3, 6 and 8 km h-1), two bulk densities of soil (1.1 and 1.4 Mg m-3) and two levels of residues (1 and 2 ton ha-1). The experimental design consisted in a (3×2×2) complete randomized factorial with three replicates for each test. Moisture of seed furrow, separation of seed and fertilizer, hair pinning and resultant forces acting on the openers were used as assessing indexes. There was no significant difference between soil moisture content in slots created by DDO and MDO at 0-4 cm depth, but at 4-8 cm the in the slot created by MDO moisture content was higher about 9%. Horizontal force for both openers increased with increasing speed and soil bulk density. Vertical force for DDO was negative so it needed additional weight for penetrating in the soil, but vertical force for MDO was positive and, which can solve the challenge of penetration in the soil in DDO. In soft soil with heavy residues some trash was pushed by DDO into seed furrow (hair pinning) but at MDO seed were placed at clean groove. Lateral and vertical separation of seed and fertilizer was performed effectively by MDO (4.5 and 5 cm, respectively) while DDO put seed and fertilizer close to each other. Overall, the Modified Offset Double-disks (MDO) had better performance. So by adapting this opener with no-tillage drillers it would possible to have higher yield in conservation tillage where the most appropriate opener is disk type.

Fabrication of High Aluminum Content Mg alloys using a Horizontal Twin Roll Caster

This study was aimed for investigating of manufacturing high aluminum content Mg alloys using a horizontal twin roll caster. Recently, weight saving has been key issues for lighter transport equipments as well as electronic component parts. As alternative materials to aluminum alloys, developing magnesium alloy with higher strength has been expected. Normally high Aluminum content Mg alloy has poor ductility and is difficult to be rolled because of its high strength. However, twin roll casting process is suitable for manufacturing wrought Mg alloys because materials can be cast directly from molten metal. In this study, manufacturing of high aluminum content magnesium alloy sheet using the roll casting process has been carried out. Effects of manufacturing parameter, such as roll velocity, pouring temperature and roll gap, on casting was investigated. A microscopic observation of the crystals of cross section of as cast strip as well as rolled strip was conducted.

The Effects of Extracorporeal Shockwave Therapy on Pain, Function, Range of Motion and Strength in Patients with Plantar Fasciitis

Ten percent of the population will develop plantar fasciitis (PF) during their lifetime. Two million people are treated yearly accounting for 11-15% of visits to medical professionals. Treatment ranges from conservative to surgical intervention. The purpose of this study was to assess the effects of extracorporeal shockwave therapy (ECSWT) on heel pain, function, range of motion (ROM), and strength in patients with PF. One hundred subjects were treated with ECSWT and measures were taken before and three months after treatment. There was significant differences in visual analog scale scores for pain at rest (p=0.0001); after activity (p= 0.0001) and; overall improvement (p=0.0001). There was also significant improvement in Lower Extremity Functional Scale scores (p=0.0001); ankle plantarflexion (p=0.0001), dorsiflexion (p=0.001), and eversion (p=0.017),and first metatarsophalangeal joint flexion (p=0.002) and extension (p=0.003) ROM. ECSWT is an effective treatment improving heel pain, function and ROM in patients with PF.

A Dynamic Model for a Drill in the Drilling Process

The dynamic model of a drill in drilling process was proposed and investigated in this study. To assure a good drilling quality, the vibration variation on the drill tips during high speed drilling is needed to be investigated. A pre-twisted beam is used to simulate the drill. The moving Winkler-Type elastic foundation is used to characterize the tip boundary variation in drilling. Due to the variation of the drill depth, a time dependent dynamic model for the drill is proposed. Results simulated from this proposed model indicate that an abrupt natural frequencies drop are experienced as the drill tip tough the workpiece, and a severe vibration is induced. The effects of parameters, e.g. drilling speed, depth, drill size and thrust force on the drill tip responses studied.

Cutaneous Application of Royal Jelly Inhibits Skin Lesions in NC/Nga Mice, a Human-Like Mouse Model of Atopic Dermatitis

Anti-allergic effects of royal jelly were evaluated in a human-like mouse model of atopic dermatitis. NC/Nga mice were cutaneously applied with royal jelly for 6 weeks. Royal jelly-treated mice exhibited lower levels of serum total immunoglobulin E in comparison with controls. We found that the treatment decreased (11% to the control) expression of mRNA for aquaporin-3, which is involved in the modulation of epidermal hydration. Microarray analysis revealed more than 10-fold changes in the expression of several genes, such as transglutaminase 2, repetin, and keratins. In normal human epidermal keratinocytes, royal jelly extract suppressed interleukin-8 elevation induced by TNF-α and interferon-γ, suggesting direct anti-inflammatory activity in keratinocytes. Collectively, topical application of royal jelly may be useful for amelioration of lesions and inflammation in atopic dermatitis.

Study on the Derivatization Process Using N-O-bis-(trimethylsilyl)-trifluoroacetamide,N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide, Trimethylsilydiazomethane for the Determination of Fecal Sterols by Gas Chromatography-Mass Spectrometry

Fecal sterol has been proposed as a chemical indicator of human fecal pollution even when fecal coliform populations have diminished due to water chlorination or toxic effects of industrial effluents. This paper describes an improved derivatization procedure for simultaneous determination of four fecal sterols including coprostanol, epicholestanol, cholesterol and cholestanol using gas chromatography-mass spectrometry (GC-MS), via optimization study on silylation procedures using N-O-bis (trimethylsilyl)-trifluoroacetamide (BSTFA), and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA), which lead to the formation of trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBS) derivatives, respectively. Two derivatization processes of injection-port derivatization and water bath derivatization (60 oC, 1h) were inspected and compared. Furthermore, the methylation procedure at 25 oC for 2h with trimethylsilydiazomethane (TMSD) for fecal sterols analysis was also studied. It was found that most of TMS derivatives demonstrated the highest sensitivities, followed by methylated derivatives. For BSTFA or MTBSTFA derivatization processes, the simple injection-port derivatization process could achieve the same efficiency as that in the tedious water bath derivatization procedure.

Refined Buckling Analysis of Rectangular Plates Under Uniaxial and Biaxial Compression

In the traditional buckling analysis of rectangular plates the classical thin plate theory is generally applied, so neglecting the plating shear deformation. It seems quite clear that this method is not totally appropriate for the analysis of thick plates, so that in the following the two variable refined plate theory proposed by Shimpi (2006), that permits to take into account the transverse shear effects, is applied for the buckling analysis of simply supported isotropic rectangular plates, compressed in one and two orthogonal directions. The relevant results are compared with the classical ones and, for rectangular plates under uniaxial compression, a new direct expression, similar to the classical Bryan-s formula, is proposed for the Euler buckling stress. As the buckling analysis is a widely diffused topic for a variety of structures, such as ship ones, some applications for plates uniformly compressed in one and two orthogonal directions are presented and the relevant theoretical results are compared with those ones obtained by a FEM analysis, carried out by ANSYS, to show the feasibility of the presented method.

Effects of Mobile Phone Generated High Frequency Electromagnetic Field on the Viability and Biofilm Formation of Staphylococcus aureus

Staphylococcus aureus, one of the microflora in a human external auditory canal (EAC) is frequently exposed to highfrequency electromagnetic field (HF-EMF) generated by mobile phones. It is normally non-pathogenic but in certain circumstances, it can cause infections. This study investigates the changes in the physiology of S. aureus when exposed to HF-EMF of a mobile phone. Exponentially grown S. aureus were exposed to two conditions of EMF irradiation (standby-mode and on-call mode) at four durations; 15, 30, 45 and 60 min. Changes in the viability and biofilm production of the S. aureus were compared between the two conditions of exposure. EMF from the standby-mode has enhanced the growth of S. aureus but during on-call, the growth was suppressed. No significant difference in the amount of biofilm produced in both modes of exposure was observed. Thus, HF-EMF of mobile phone affects the viability of S. aureus but not its ability to produce biofilm.

Minimizing Energy Consumption in Wireless Sensor Networks using Binary Integer Linear Programming

The important issue considered in the widespread deployment of Wireless Sensor Networks (WSNs) is an efficiency of the energy consumption. In this paper, we present a study of the optimal relay station planning problems using Binary Integer Linear Programming (BILP) model to minimize the energy consumption in WSNs. Our key contribution is that the proposed model not only ensures the required network lifetime but also guarantees the radio connectivity at high level of communication quality. Specially, we take into account effects of noise, signal quality limitation and bit error rate characteristics. Numerical experiments were conducted in various network scenarios. We analyzed the effects of different sensor node densities and distribution on the energy consumption.

Steady State Temperature Distribution of Cast-Resin Dry Type Transformer Based on New Thermal Model Using Finite Element Method

In this paper, a thermal model of cast- resin dry type transformer is proposed. The proposed thermal model is solved by finite element technique to get the temperature at any location of the transformer. The basic modes of heat transfer such as conduction; convection and radiation are used to get the steady state temperature distribution of the transformer. The predicted temperatures are compared with experimental results reported in this paper and it is found a good agreement between them. The effects of various parameters such as width of air duct, ambient temperature and emissivity of the outer surface were also studied.

Influence of Electrolytes and High Viscosity on Liquid-Liquid Separation

Liquid-liquid extraction is a process using two immiscible liquids to extract compounds from one phase without high temperature requirement. Mostly, the technical implementation of this process is carried out in mixer-settlers or extraction columns. In real chemical processes, chemicals may have high viscosity and contain impurities. These impurities may change the settling behavior of the process without measurably changing the physical properties of the phases. In the current study, the settling behavior and the affected parameters in a high-viscosity system were observed. Batchsettling experiments were performed to experimentally quantify the settling behavior and the mixer-settler model of Henschke [1] was used to evaluate the behavior of the toluene + water system. The viscosity of the system was increased by adding polyethylene glycol 4000 to the aqueous phase. NaCl and Na2SO4 were used to study the influence of electrolytes. The results from this study show that increasing the viscosity of water has a higher influence on the settling behavior in comparison to the effects of the electrolytes. It can be seen from the experiments that at high salt concentrations, there was no effect on the settling behavior.

The Effects of Aggregate Sizes and Fiber Volume Fraction on Bending Toughness and Direct Tension of Steel Fiber Reinforced Concrete

In order to supplement the brittle property of concrete, fibers are added into concrete mixtures. Compared to general concrete, various characteristics such as tensile strength, bending strength, bending toughness, and resistance to crack are superior, and even when cracks occur, improvements on toughness as well as resistance to shock are excellent due to the growth of fracture energy. Increased function of steel fiber reinforced concrete can be differentiated depending on the fiber dispersion, and sand percentage can be an important influence on the fiber dispersion. Therefore, in this research, experiments were planned on sand percentage in order to apprehend the influence of sand percentage on the bending properties and direct tension of SFRC and basic experiments were conducted on bending and direct tension in order to recognize the properties of bending properties and direct tension following the size of the aggregates and sand percentage.

Fluid Flow and Heat Transfer Structures of Oscillating Pipe Flows

The RANS method with Saffman-s turbulence model was employed to solve the time-dependent turbulent Navier-Stokes and energy equations for oscillating pipe flows. The method of partial sums of the Fourier series is used to analyze the harmonic velocity and temperature results. The complete structures of the oscillating pipe flows and the averaged Nusselt numbers on the tube wall are provided by numerical simulation over wide ranges of ReA and ReR. Present numerical code is validated by comparing the laminar flow results to analytic solutions and turbulence flow results to published experimental data at lower and higher Reynolds numbers respectively. The effects of ReA and ReR on the velocity, temperature and Nusselt number distributions have been di scussed. The enhancement of the heat transfer due to oscillating flows has also been presented. By the way of analyzing the overall Nusselt number over wide ranges of the Reynolds number Re and Keulegan- Carpenter number KC, the optimal ratio of the tube diameter over the oscillation amplitude is obtained based on the existence of a nearly constant optimal KC number. The potential application of the present results in sea water cooling has also been discussed.

Antioxidants Reveal Protection against the Biochemical Changes in Liver, Kidney and Blood Profiles after Clindamycin / Ibuprofen Administration in Dental Patients

The adverse effects of Clindamycin (Clind.) / Ibuprofen (Ibu.) combination on liver, kidney, blood elements and the significances of antioxidants (N-acetylcysteine and Zinc) against these effects were evaluated. The study includes: Group I; control n=30, Group II; patients on Clind.300mg/Ibu.400mg twice daily for a week n=30, Group III; patients on Clind.300mg/Ibu.400mg+Nacetylcysteine 200mg twice daily for a week n=15 and Group IV; patients on Clind.300mg/Ibu.400mg+Zinc50mg twice daily for a week n=15. Serum malondialdehyde (MDA), alanine transferase (ALT), aspartate transferase (AST), γ glutamyl transferase (GGT), creatinine, blood urea nitrogen (BUN) were measured. Applying one way ANOVA followed by Tuckey Kramer post test, Group II showed significant increase in ALT, AST, GGT, BUN and decrease in Hb, RBCs, platelets than Group I. Group III showed significant decrease in ALT, AST, GGT, BUN than Group II. Moreover, Group IV showed significant decrease in ALT, AST, GGT and increase in Hb, RBCs, and platelets than Group II. Conclusively, Adding Zinc or Nacetylcysteine buffer the oxidative stress and improve the therapeutic outcome of Clindamycin/Ibuprofen combination.

Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification

A new dynamic clustering approach (DCPSO), based on Particle Swarm Optimization, is proposed. This approach is applied to unsupervised image classification. The proposed approach automatically determines the "optimum" number of clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by partitioning the data set into a relatively large number of clusters to reduce the effects of initial conditions. Using binary particle swarm optimization the "best" number of clusters is selected. The centers of the chosen clusters is then refined via the Kmeans clustering algorithm. The experiments conducted show that the proposed approach generally found the "optimum" number of clusters on the tested images.

Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Husk for Ethanol Production: Effect of Sugar Degradation

Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 1/min and 2.29 x 108 L/mole/min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.

Theoretical and Analytical Approaches for Investigating the Relations between Sediment Transport and Channel Shape

This study investigated the effect of cross sectional geometry on sediment transport rate. The processes of sediment transport are generally associated to environmental management, such as pollution caused by the forming of suspended sediment in the channel network of a watershed and preserving physical habitats and native vegetations, and engineering applications, such as the influence of sediment transport on hydraulic structures and flood control design. Many equations have been proposed for computing the sediment transport, the influence of many variables on sediment transport has been understood; however, the effect of other variables still requires further research. For open channel flow, sediment transport capacity is recognized to be a function of friction slope, flow velocity, grain size, grain roughness and form roughness, the hydraulic radius of the bed section and the type and quantity of vegetation cover. The effect of cross sectional geometry of the channel on sediment transport is one of the variables that need additional investigation. The width-depth ratio (W/d) is a comparative indicator of the channel shape. The width is the total distance across the channel and the depth is the mean depth of the channel. The mean depth is best calculated as total cross-sectional area divided by the top width. Channels with high W/d ratios tend to be shallow and wide, while channels with low (W/d) ratios tend to be narrow and deep. In this study, the effects of the width-depth ratio on sediment transport was demonstrated theoretically by inserting the shape factor in sediment continuity equation and analytically by utilizing the field data sets for Yalobusha River. It was found by utilizing the two approaches as a width-depth ratio increases the sediment transport decreases.

The Relationship of Anthocyanins with Color of Organically and Conventionally Cultivated Potatoes

Many of the compounds present in potato are important because of their beneficial effects on health, therefore, are highly desirable in the human diet. Potato tubers contain significant amounts of anthocyanins. The aim of this research was to determine the content of anthocyanins and its relationship with the colour of organically and conventionally cultivated potato varieties. In the research eight potato samples of three potato varieties were analyzed on anthocyanins, dry matter content and color. Obtained results show that there was no significant influence on amount of anthocyanins between different cultivation environments (p>0.05) while between varieties – significant difference (p