Resilience in Patients with Chronic Kidney Disease in Hemodialysis

Chronic Kidney Disease is considered a serious public health problem. The exploitation of resilience has been guided by studies conducted in various contexts, especially in hemodialysis, since the impact of diagnosis and restrictions produced during the treatment process because, despite advances in treatment, remains the stigma of the disease and the feeling of pain, hopelessness, low self-esteem and disability. The objective was to evaluate the level of resilience of patients in chronic renal dialysis. This is a descriptive, correlational, cross and quantitative research. The sample consisted of 100 patients from a Renal Replacement Therapy Unit in the countryside of São Paulo. For data collection were used the characterization instrument of Participants and the Resilience Scale. There was a predominance of males (70.0%) were Caucasian (45.0%) and had completed elementary education (34.0%). The average score obtained through the Resilience Scale was 131.3 (± 20.06) points. The resiliency level submitted may be considered satisfactory. It is expected that this study will assist in the preparation of programs and actions in order to avoid possible situations of crises faced by chronic renal patients.

A Nutritional Wellness Program for Overweight Health Care Providers in Hospital Setting: A Randomized Controlled Trial Pilot Study

Background: The prevalence of workplace obesity is rising worldwide; therefore, the workplace is an ideal venue to implement weight control intervention. This pilot randomized controlled trial aimed to develop, implement, and evaluate a nutritional wellness program for obese health care providers working in a hospital. Methods: This hospital-based nutritional wellness program was an 8-week pilot randomized controlled trial for obese health care providers. The primary outcomes were body weight and body mass index (BMI). The secondary outcomes were serum fasting glucose, fasting cholesterol, triglyceride, high-density (HDL) and low-density (LDL) lipoprotein, body fat percentage, and body mass. Participants were randomly assigned to the intervention (n = 20) or control (n = 22) group. Participants in both groups received individual nutrition counselling and nutrition pamphlets, whereas only participants in the intervention group were given mobile phone text messages. Results: 42 participants completed the study. In comparison with the control group, the intervention group showed approximately 0.98 kg weight reduction after two months. Participants in intervention group also demonstrated clinically significant improvement in BMI, serum cholesterol level, and HDL level. There was no improvement of body fat percentage and body mass for both intervention and control groups. Conclusion: The nutritional wellness program for obese health care providers was feasible in hospital settings. Health care providers demonstrated short-term weight loss, decrease in serum fasting cholesterol level, and HDL level after completing the program.

A Comparative Analysis of Solid Waste Treatment Technologies on Cost and Environmental Basis

Waste management decision making in developing countries has moved towards being more pragmatic, transparent, sustainable and comprehensive. Turkey is required to make its waste related legislation compatible with European Legislation as it is a candidate country of the European Union. Improper Turkish practices such as open burning and open dumping practices must be abandoned urgently, and robust waste management systems have to be structured. The determination of an optimum waste management system in any region requires a comprehensive analysis in which many criteria are taken into account by stakeholders. In conducting this sort of analysis, there are two main criteria which are evaluated by waste management analysts; economic viability and environmentally friendliness. From an analytical point of view, a central characteristic of sustainable development is an economic-ecological integration. It is predicted that building a robust waste management system will need significant effort and cooperation between the stakeholders in developing countries such as Turkey. In this regard, this study aims to provide data regarding the cost and environmental burdens of waste treatment technologies such as an incinerator, an autoclave (with different capacities), a hydroclave and a microwave coupled with updated information on calculation methods, and a framework for comparing any proposed scenario performances on a cost and environmental basis.

Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages

Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.

Concept, Design and Implementation of Power System Component Simulator Based on Thyristor Controlled Transformer and Power Converter

This paper presents information on Power System Component Simulator – a device designed for LINTE^2 laboratory owned by Gdansk University of Technology in Poland. In this paper, we first provide an introductory information on the Power System Component Simulator and its capabilities. Then, the concept of the unit is presented. Requirements for the unit are described as well as proposed and introduced functions are listed. Implementation details are given. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Lastly, the results of experiments performed using Power System Component Simulator are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area.

Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Examination of the Reasons for the Formation of Red Oil in Spent Caustic from Olefin Plant

Due to the complexity of olefinic plants, various environmental pollutants exist such as NOx, CO2, Tar Water, and most importantly Spent Caustic. In this paper, instead of investigating ways of treating this pollutant, we evaluated the production in relation to plant’s variable items. We primarily discussed the factors affecting the quality of the output spent caustic such as impurities in the feed of olefin plant, the amount of injected dimethyl disulfide (DMDS) in furnaces, variation in feed composition, differences among gas temperatures and the concentration of caustic solution at the bottom of the tower. The results of the laboratory proved that in the formation of Red Oil, 1,3butadiene and acetaldehyde followed free radical and aldol condensation mechanism respectively. By increasing the injection rate of DMDS, Mercaptide amount increases in the effluent. In addition, pyrolysis gasoline accumulation is directly related to caustic concentration in the tower. Increasing naphtenes in the liquid feed augments the amount of 1,3butadiene, as one of the sources of Red Oil formation. By increasing the oxygenated compound in the feed, the rate of acetaldehyde formation, as the main source of Red Oil formation, increases.

Influence of Pile Radius on Inertial Response of Pile Group in Fundamental Frequency of Homogeneous Soil Medium

An efficient method is developed for the response of a group of vertical, cylindrical fixed-head, finite length piles embedded in a homogeneous elastic stratum, subjected to harmonic force atop the pile group cap. Pile to pile interaction is represented through simplified beam-on-dynamic-Winkler-foundation (BDWF) with realistic frequency-dependent springs and dashpots. Pile group effect is considered through interaction factors. New closed-form expressions for interaction factors and curvature ratios atop the pile are extended by considering different boundary conditions at the tip of the piles (fixed, hinged). In order to investigate the fundamental characteristics of inertial bending strains in pile groups, inertial bending strains at the head of each pile are expressed in terms of slenderness ratio. The results of parametric study give valuable insight in understanding the behavior of fixed head pile groups in fundamental natural frequency of soil stratum.

Exploring the Spatial Characteristics of Mortality Map: A Statistical Area Perspective

The analysis of geographic inequality heavily relies on the use of location-enabled statistical data and quantitative measures to present the spatial patterns of the selected phenomena and analyze their differences. To protect the privacy of individual instance and link to administrative units, point-based datasets are spatially aggregated to area-based statistical datasets, where only the overall status for the selected levels of spatial units is used for decision making. The partition of the spatial units thus has dominant influence on the outcomes of the analyzed results, well known as the Modifiable Areal Unit Problem (MAUP). A new spatial reference framework, the Taiwan Geographical Statistical Classification (TGSC), was recently introduced in Taiwan based on the spatial partition principles of homogeneous consideration of the number of population and households. Comparing to the outcomes of the traditional township units, TGSC provides additional levels of spatial units with finer granularity for presenting spatial phenomena and enables domain experts to select appropriate dissemination level for publishing statistical data. This paper compares the results of respectively using TGSC and township unit on the mortality data and examines the spatial characteristics of their outcomes. For the mortality data between the period of January 1st, 2008 and December 31st, 2010 of the Taitung County, the all-cause age-standardized death rate (ASDR) ranges from 571 to 1757 per 100,000 persons, whereas the 2nd dissemination area (TGSC) shows greater variation, ranged from 0 to 2222 per 100,000. The finer granularity of spatial units of TGSC clearly provides better outcomes for identifying and evaluating the geographic inequality and can be further analyzed with the statistical measures from other perspectives (e.g., population, area, environment.). The management and analysis of the statistical data referring to the TGSC in this research is strongly supported by the use of Geographic Information System (GIS) technology. An integrated workflow that consists of the tasks of the processing of death certificates, the geocoding of street address, the quality assurance of geocoded results, the automatic calculation of statistic measures, the standardized encoding of measures and the geo-visualization of statistical outcomes is developed. This paper also introduces a set of auxiliary measures from a geographic distribution perspective to further examine the hidden spatial characteristics of mortality data and justify the analyzed results. With the common statistical area framework like TGSC, the preliminary results demonstrate promising potential for developing a web-based statistical service that can effectively access domain statistical data and present the analyzed outcomes in meaningful ways to avoid wrong decision making.

Adjustment and Scale-Up Strategy of Pilot Liquid Fermentation Process of Azotobacter sp.

The genus Azotobacter has been widely used as bio-fertilizer due to its significant effects on the stimulation and promotion of plant growth in various agricultural species of commercial interest. In order to obtain significantly viable cellular concentration, a scale-up strategy for a liquid fermentation process (SmF) with two strains of A. chroococcum (named Ac1 and Ac10) was validated and adjusted at laboratory and pilot scale. A batch fermentation process under previously defined conditions was carried out on a biorreactor Infors®, model Minifors of 3.5 L, which served as a baseline for this research. For the purpose of increasing process efficiency, the effect of the reduction of stirring speed was evaluated in combination with a fed-batch-type fermentation laboratory scale. To reproduce the efficiency parameters obtained, a scale-up strategy with geometric and fluid dynamic behavior similarities was evaluated. According to the analysis of variance, this scale-up strategy did not have significant effect on cellular concentration and in laboratory and pilot fermentations (Tukey, p > 0.05). Regarding air consumption, fermentation process at pilot scale showed a reduction of 23% versus the baseline. The percentage of reduction related to energy consumption reduction under laboratory and pilot scale conditions was 96.9% compared with baseline.

Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm

Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.

Simulation of the Extensional Flow Mixing of Molten Aluminium and Fly Ash Nanoparticles

This study presents simulations of an aluminium melt containing an initially non-dispersed fly ash nanoparticle phase. Mixing is affected predominantly by means of forced extensional flow via either straight or slanted orifices. The sensitivity to various process parameters is determined. The simulated process is used for the production of cast fly ash-aluminium nanocomposites. The possibilities for rod and plate stock grading in the context of a continuous casting process implementation are discussed.

Cluster Analysis of Customer Churn in Telecom Industry

The research examines the factors that affect customer churn (CC) in the Jordanian telecom industry. A total of 700 surveys were distributed. Cluster analysis revealed three main clusters. Results showed that CC and customer satisfaction (CS) were the key determinants in forming the three clusters. In two clusters, the center values of CC were high, indicating that the customers were loyal and SC was expensive and time- and energy-consuming. Still, the mobile service provider (MSP) should enhance its communication (COM), and value added services (VASs), as well as customer complaint management systems (CCMS). Finally, for the third cluster the center of the CC indicates a poor level of loyalty, which facilitates customers churn to another MSP. The results of this study provide valuable feedback for MSP decision makers regarding approaches to improving their performance and reducing CC.

Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V

A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.

Influence of the Line Parameters in Transmission Line Fault Location

In the paper, two fault location algorithms are presented for transmission lines which use the line parameters to estimate the distance to the fault. The first algorithm uses only the measurements from one end of the line and the positive and zero sequence parameters of the line, while the second one uses the measurements from both ends of the line and only the positive sequence parameters of the line. The algorithms were tested using a transmission grid transposed in MATLAB. In a first stage it was established a fault location base line, where the algorithms mentioned above estimate the fault locations using the exact line parameters. After that, the positive and zero sequence resistance and reactance of the line were calculated again for different ground resistivity values and then the fault locations were estimated again in order to compare the results with the base line results. The results show that the algorithm which uses the zero sequence impedance of the line is the most sensitive to the line parameters modifications. The other algorithm is less sensitive to the line parameters modification.

The Effects of Local Factors on the Concentrations and Flora of Viable Fungi in School Buildings

A wide range of health effects among occupants are associated with the exposure to bioaerosols from fungal sources. Although the accurate role of these aerosols in causing the symptoms and diseases is poorly understood, the important effect of bioaerosol exposure on human health is well recognized. Thus, there is a need to determine all of the contributing factors related to the concentration of fungi in indoor air. In this study, we reviewed and summarized the different factors affecting the concentrations of viable fungi in school buildings. The literature research was conducted using Pubmed and Google Scholar. In addition, we searched the lists of references of selected articles. According to the literature, the main factors influencing the concentration of viable fungi in the school buildings are moisture damage in building structures, the season (temperature and humidity conditions), the type and rate of ventilation, the number and activities of occupants and diurnal variations. This study offers valuable information that can be used in the interpretation of the fungal analysis and to decrease microbial exposure by reducing known sources and/or contributing factors. However, more studies of different local factors contributing to the human microbial exposure in school buildings—as well as other type of buildings and different indoor environments—are needed.

An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Performance Analysis of Artificial Neural Network Based Land Cover Classification

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.