Chemical, Pasting and Sensory Properties of Whole Fermented Maize (Ogi) Fortified with Pigeon Pea Flour

Pigeon pea (Cajanus cajan) blanched for 20min was dehulled and milled into flour. The flour was incorporated into dried whole fermented maize (Ogi) at five levels. The resultant products were analyzed for chemical and pasting properties. The fortified Ogi samples were also assessed for sensory attributes: appearance, color, flavor, mouth feel and overall acceptability. The protein content in the whole Ogi fortified samples was in the range of 11.2-16.6% and crude fibre 3.22-3.46%. Fortified whole Ogi with pigeon pea at 30%, 40% and 50% of inclusion with pigeon pea flour has higher protein, crude fibre and ash content. Varying range of pasting quality was recorded for the blends, pasting temperature for fortified Obi was in the range of 45.3-49.50C and peak time 5.05-5.210C. The sensory acceptability of the whole Ogi fortified blends prepared into gruel has higher acceptability for various qualities in comparison with the traditional Ogi gruel.

Improvement over DV-Hop Localization Algorithm for Wireless Sensor Networks

In this paper, we propose improved versions of DVHop algorithm as QDV-Hop algorithm and UDV-Hop algorithm for better localization without the need for additional range measurement hardware. The proposed algorithm focuses on third step of DV-Hop, first error terms from estimated distances between unknown node and anchor nodes is separated and then minimized. In the QDV-Hop algorithm, quadratic programming is used to minimize the error to obtain better localization. However, quadratic programming requires a special optimization tool box that increases computational complexity. On the other hand, UDV-Hop algorithm achieves localization accuracy similar to that of QDV-Hop by solving unconstrained optimization problem that results in solving a system of linear equations without much increase in computational complexity. Simulation results show that the performance of our proposed schemes (QDV-Hop and UDV-Hop) is superior to DV-Hop and DV-Hop based algorithms in all considered scenarios.

An Efficient and Secure Solution for the Problems of ARP Cache Poisoning Attacks

The Address Resolution Protocol (ARP) is used by computers to map logical addresses (IP) to physical addresses (MAC). However ARP is an all trusting protocol and is stateless which makes it vulnerable to many ARP cache poisoning attacks such as Man-in-the-Middle (MITM) and Denial of service (DoS) attacks. These flaws result in security breaches thus weakening the appeal of the computer for exchange of sensitive data. In this paper we describe ARP, outline several possible ARP cache poisoning attacks and give the detailed of some attack scenarios in network having both wired and wireless hosts. We have analyzed each of proposed solutions, identify their strengths and limitations. Finally get that no solution offers a feasible solution. Hence, this paper presents an efficient and secure version of ARP that is able to cope up with all these types of attacks and is also a feasible solution. It is a stateful protocol, by storing the information of the Request frame in the ARP cache, to reduce the chances of various types of attacks in ARP. It is more efficient and secure by broadcasting ARP Reply frame in the network and storing related entries in the ARP cache each time when communication take place.

Performances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives

The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-line speed estimator requires the NN model to be accurate, simpler in design, structurally compact and computationally less complex to ensure faster execution and effective control in real time implementation. This in turn to a large extent depends on the type of Neural Architecture. This paper investigates three types of neural architectures for on-line speed estimation and their performance is compared in terms of accuracy, structural compactness, computational complexity and execution time. The suitable neural architecture for on-line speed estimation is identified and the promising results obtained are presented.

Model based Soft-Sensor for Industrial Crystallization: On-line Mass of Crystals and Solubility Measurement

Monitoring and control of cane sugar crystallization processes depend on the stability of the supersaturation (σ ) state. The most widely used information to represent σ is the electrical conductivity κ of the solutions. Nevertheless, previous studies point out the shortcomings of this approach: κ may be regarded as inappropriate to guarantee an accurate estimation of σ in impure solutions. To improve the process control efficiency, additional information is necessary. The mass of crystals in the solution ( c m ) and the solubility (mass ratio of sugar to water / s w m m ) are relevant to complete information. Indeed, c m inherently contains information about the mass balance and / s w m m contains information about the supersaturation state of the solution. The main problem is that c m and / s w m m are not available on-line. In this paper, a model based soft-sensor is presented for a final crystallization stage (C sugar). Simulation results obtained on industrial data show the reliability of this approach, c m and the crystal content ( cc ) being estimated with a sufficient accuracy for achieving on-line monitoring in industry

A High Accuracy Measurement Circuit for Soil Moisture Detection

The study of soil for agriculture purposes has remained the main focus of research since the beginning of civilization as humans- food related requirements remained closely linked with the soil. The study of soil has generated an interest among the researchers for very similar other reasons including transmission, reflection and refraction of signals for deploying wireless underground sensor networks or for the monitoring of objects on (or in ) soil in the form of better understanding of soil electromagnetic characteristics properties. The moisture content has been very instrumental in such studies as it decides on the resistance of the soil, and hence the attenuation on signals traveling through soil or the attenuation the signals may suffer upon their impact on soil. This work is related testing and characterizing a measurement circuit meant for the detection of moisture level content in soil.

Strategies for Development of Information Society in Montenegro

Creation of information society, or in other words, a society based on knowledge, has wide consequences, both on individual and complete society, and in general – on a economy of one country. Development and implementation of ICT represents a stimulant for economic growth. On individual level, knowledge, skills and information gathered using ICT, are expanding individual possibilities of persons, enabling them to have access to timely sensitive information, such as market prices or investment conditions, possibilities to access Government-s or private development funds, etc. By doing so, productivity is increased both on individual and national level and therefore social wellbeing in general. In one word, creation of information society - a knowledge society is happening. This work will describe challenges and strategies that will follow the development as well as obstacles in creating information society – knowledge society in Montenegro.

Numerical Analysis of Laminar to Turbulent Transition on the DU91-W2-250 Airfoil

This paper presents a study of laminar to turbulent transition on a profile specifically designed for wind turbine blades, the DU91-W2-250, which belongs to a class of wind turbine dedicated airfoils, developed by Delft University of Technology. A comparison between the experimental behavior of the airfoil studied at Delft wind tunnel and the numerical predictions of the commercial CFD solver ANSYS FLUENT® has been performed. The prediction capabilities of the Spalart-Allmaras turbulence model and of the γ-θ Transitional model have been tested. A sensitivity analysis of the numerical results to the spatial domain discretization has also been performed using four different computational grids, which have been created using the mesher GAMBIT®. The comparison between experimental measurements and CFD results have allowed to determine the importance of the numerical prediction of the laminar to turbulent transition, in order not to overestimate airfoil friction drag due to a fully turbulent-regime flow computation.

Electronic Markets has Weakened the “Tradeoff between Reach and Richness“ in the Internet

This paper has two main ideas. Firstly, it describes Evans and Wurster-s concepts “the trade-off between reach and richness", and relates them to the impact of technology on the virtual markets. Authors Evans and Wurster see the transfer of information as a 'trade'off between richness and reach-. Reach refers to the number of people who share particular information, with Richness ['Rich'] being a more complex concept combining: bandwidth, customization, interactivity, reliability, security and currency. Traditional shopping limits the number of shops the shopper is able to visit due to time and other cost constraints; the time spent traveling consequently leaves the shopper with less time to evaluate the product. The paper concludes that although the Web provides Reach, offering Richness and the sense of community required for creating and sustaining relationships with potential clients could be difficult.

An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks

Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.

Simple Agents Benefit Only from Simple Brains

In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.

Non-Invasive Technology on a Classroom Chair for Detection of Emotions Used for the Personalization of Learning Resources

Emotions are related with learning processes and physiological signals can be used to detect them for the personalization of learning resources and to control the pace of instruction. A model of relevant emotions has been developed, where specific combinations of emotions and cognition processes are connected and integrated with the concept of 'flow', in order to improve learning. The cardiac pulse is a reliable signal that carries useful information about the subject-s emotional condition; it is detected using a classroom chair adapted with non invasive EMFi sensor and an acquisition system that generates a ballistocardiogram (BCG), the signal is processed by an algorithm to obtain characteristics that match a specific emotional condition. The complete chair system is presented in this work, along with a framework for the personalization of learning resources.

Decision Algorithm for Smart Airbag Deployment Safety Issues

Airbag deployment has been known to be responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decisions. Therefore, the authorities and industries have been looking for more innovative and intelligent products to be realized for future enhancements in the vehicle safety systems (VSSs). Although the VSSs technologies have advanced considerably, they still face challenges such as how to avoid unnecessary and untimely airbag deployments that can be hazardous and fatal. Currently, most of the existing airbag systems deploy without regard to occupant size and position. As such, this paper will focus on the occupant and crash sensing performances due to frontal collisions for the new breed of so called smart airbag systems. It intends to provide a thorough discussion relating to the occupancy detection, occupant size classification, occupant off-position detection to determine safe distance zone for airbag deployment, crash-severity analysis and airbag decision algorithms via a computer modeling. The proposed system model consists of three main modules namely, occupant sensing, crash severity analysis and decision fusion. The occupant sensing system module utilizes the weight sensor to determine occupancy, classify the occupant size, and determine occupant off-position condition to compute safe distance for airbag deployment. The crash severity analysis module is used to generate relevant information pertinent to airbag deployment decision. Outputs from these two modules are fused to the decision module for correct and efficient airbag deployment action. Computer modeling work is carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes.

Fusion Filters Weighted by Scalars and Matrices for Linear Systems

An optimal mean-square fusion formulas with scalar and matrix weights are presented. The relationship between them is established. The fusion formulas are compared on the continuous-time filtering problem. The basic differential equation for cross-covariance of the local errors being the key quantity for distributed fusion is derived. It is shown that the fusion filters are effective for multi-sensor systems containing different types of sensors. An example demonstrating the reasonable good accuracy of the proposed filters is given.

Zigbee Based Wireless Energy Surveillance System for Energy Savings

In this paper, zigbee communication based wireless energy surveillance system is presented. The proposed system consists of multiple energy surveillance devices and an energy surveillance monitor. Each different standby power-off value of electric device is set automatically by using learning function of energy surveillance device. Thus adaptive standby power-off function provides user convenience and it maximizes the energy savings. Also, power consumption monitoring function is helpful to reduce inefficient energy consumption in home. The zigbee throughput simulator is designed to evaluate minimum transmission power and maximum allowable information quantity in the proposed system. The test result of prototype has been satisfied all the requirements. The proposed system has confirmed that can be used as an intelligent energy surveillance system for energy savings in home or office.

Low Power Circuit Architecture of AES Crypto Module for Wireless Sensor Network

Recently, much research has been conducted for security for wireless sensor networks and ubiquitous computing. Security issues such as authentication and data integrity are major requirements to construct sensor network systems. Advanced Encryption Standard (AES) is considered as one of candidate algorithms for data encryption in wireless sensor networks. In this paper, we will present the hardware architecture to implement low power AES crypto module. Our low power AES crypto module has optimized architecture of data encryption unit and key schedule unit which could be applicable to wireless sensor networks. We also details low power design methods used to design our low power AES crypto module.

Effect of Processing on Sensory Characteristics and Chemical Composition of Cottonseed (Gossypium hirsutum) and Its Extract

The seeds of cotton (Gossypium hirsutum) fall among the lesser known oil seeds. Cottonseeds are not normally consumed in their natural state due to their gossypol content, an antinutrient. The effect of processing on the sensory characteristics and chemical composition of cottonseed and its extract was studied by subjecting the cottonseed extract to heat treatment (boiling) and the cottonseed to fermentation. The cottonseed extract was boiled using the open pot and the pressure pot for 30 minutes respectively. The fermentation of the cottonseed was carried out for 6 days with samples withdrawn at intervals of 2 days. The extract and fermented samples were subjected to chemical analysis and sensory evaluated for colour, aroma, taste, mouth feel, appearance and overallacceptability. The open pot sample was more preferred. Fermentation for 6 days resulted into a significant reduction in gossypol level of the cottonseed; however, sample fermented for 2 days was most preferred.

Identifying New Sequence Features for Exon-Intron Discrimination by Rescaled-Range Frameshift Analysis

For identifying the discriminative sequence features between exons and introns, a new paradigm, rescaled-range frameshift analysis (RRFA), was proposed. By RRFA, two new sequence features, the frameshift sensitivity (FS) and the accumulative penta-mer complexity (APC), were discovered which were further integrated into a new feature of larger scale, the persistency in anti-mutation (PAM). The feature-validation experiments were performed on six model organisms to test the power of discrimination. All the experimental results highly support that FS, APC and PAM were all distinguishing features between exons and introns. These identified new sequence features provide new insights into the sequence composition of genes and they have great potentials of forming a new basis for recognizing the exonintron boundaries in gene sequences.

Inhibition of the Growth of Pathogenic Candida spp. by Salicylhydroxamic Acid

Candida spp. are common and aggressive pathogens. Because of the growing resistance of Candida spp. to current antifungals, novel targets, found in Candida spp. but not in humans or other flora, have to be identified. The alternative oxidase (AOX) is one such possibility. This enzyme is insensitive to cyanide, but is sensitive to compounds such as salicylhydroxamic acid (SHAM), disulfiram and n-alkyl gallates. The growth each of six Candida spp. was inhibited significantly by ~13 mM SHAM or 2 mM cyanide, albeit to differing extents. In C. dubliniensis, C. krusei and C. tropicalis the rate of O2 uptake was inhibited by 18-36% by 25 mM SHAM, but this had little or no effect on C. glabrata, C. guilliermondii or C. parapsilosis. Although SHAM substantially inhibited the growth of Candida spp., it is unlikely that the inhibition of AOX was the cause. Salicylhydroxamic acid is used therapeutically in the treatment of urinary tract infections and urolithiasis, but it also has some potential in the treatment of Candida spp. infection.

Diagnosis of Ovarian Cancer with Proteomic Patterns in Serum using Independent Component Analysis and Neural Networks

We propose a method for discrimination and classification of ovarian with benign, malignant and normal tissue using independent component analysis and neural networks. The method was tested for a proteomic patters set from A database, and radial basis functions neural networks. The best performance was obtained with probabilistic neural networks, resulting I 99% success rate, with 98% of specificity e 100% of sensitivity.