Energy Efficient Transmission of Image over DWT-OFDM System

In many applications retransmissions of lost packets are not permitted. OFDM is a multi-carrier modulation scheme having excellent performance which allows overlapping in frequency domain. With OFDM there is a simple way of dealing with multipath relatively simple DSP algorithms.  In this paper, an image frame is compressed using DWT, and the compressed data is arranged in data vectors, each with equal number of coefficients. These vectors are quantized and binary coded to get the bit steams, which are then packetized and intelligently mapped to the OFDM system. Based on one-bit channel state information at the transmitter, the descriptions in order of descending priority are assigned to the currently good channels such that poorer sub-channels can only affect the lesser important data vectors. We consider only one-bit channel state information available at the transmitter, informing only about the sub-channels to be good or bad. For a good sub-channel, instantaneous received power should be greater than a threshold Pth. Otherwise, the sub-channel is in fading state and considered bad for that batch of coefficients. In order to reduce the system power consumption, the mapped descriptions onto the bad sub channels are dropped at the transmitter. The binary channel state information gives an opportunity to map the bit streams intelligently and to save a reasonable amount of power. By using MAT LAB simulation we can analysis the performance of our proposed scheme, in terms of system energy saving without compromising the received quality in terms of peak signal-noise ratio.

Supporting Technology Transfer with Communities and Social Software Solutions

In order to bridge the gap between research and industry, promoting technology and knowledge transfer becomes increasingly important. Especially small- and medium-sized enterprises, having only little R&D resources themselves, depend on external technology development activities for remaining innovative. Academia research on the other hand needs potential industrial partners, who are capable and willing to commercialize their technologies as most public funding programs require some sort of technology transfer or dissemination activities. Modern web technologies offer more and more “social” functionalities and open up new ways of user interaction. In the past years several technology transfer platforms were developed, making use of modern web technologies in order to enable and support technology transfer. In this paper we report on the results of a state-of-the art analyses of existing technology transfer platforms, point out their advantages and deficits and give a perspective to the development of an improved technology transfer platform.

Simulating Flow Transients in Conveying Pipeline Systems by Rigid Column and Full Elastic Methods: Pump Combined with Air Chamber

In water pipeline systems, the flow control is an integrated part of the operation, for instance, opening and closing the valves, starting and stopping the pumps, when these operations very quickly performed, they shall cause the hydraulic transient phenomena, which may cause pump and, valve failures and catastrophic pipe ruptures. Fluid transient analysis is one of the more challenging and complicated flow problems in the design and the operation of water pipeline systems. Transient control has become an essential requirement for ensuring safe operation of water pipeline systems. An accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic methods. This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Also, it provides the influence of using the protection devices to protect the pipeline systems from damaging due to the gain pressure which occur in the transient state. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the closed surge tank reduces the unfavorable effects of transients.

An Evaluation of Sag Detection Techniques for Fast Solid-State Electronic Transferring to Alternate Electrical Energy Sources

This paper deals with the evaluation of different detection strategies used in power electronic devices as a critical element for an effective mitigation of voltage disturbances. The effectiveness of those detection schemes in the mitigation of disturbances such as voltage sags by a Solid-State Transfer Switch is evaluated through simulations. All critical parameters affecting their performance is analytically described and presented. Moreover, the effect of fast detection of sags on the overall performance of STS is analyzed and investigated.

Fatigue Crack Initiation of Al-Alloys “Effect of Heat Treatment Condition”

In this investigation an empirical study was made on fatigue crack initiation on 7075 T6 and 7075 T71 Al-alloys under constant amplitude loading. In initiation stage, local strain approach at the notch was applied. Single Edge Notch Tensile specimen with semi circular notch is used. Based on experimental results, effect of mean stress, is highlights on fatigue initiation life. Results show that fatigue life initiation is affected by notch geometry and mean stress. 

Measuring the Cognitive Abilities of Teenage Basketball Players in Singapore

This paper discusses the use of a computerized test to measure the decision-making abilities of teenage basketball players in Singapore. There are five sections in this test – Competitive state anxiety inventory-2 (CSAI-2) questionnaire (measures player’s cognitive anxiety, somatic anxiety and self-confidence), Corsi block-tapping task (measures player’s short-term spatial memory), situation awareness global assessment technique (SAGAT) (measures players’ situation awareness in a basketball game), multiple choice questions on basketball knowledge (measures players’ knowledge of basketball rules and concepts), and lastly, a learning test that requires participants to recall and recognize basketball set plays (measures player’s ability to learn and recognize set plays). A total of 25 basketball players, aged 14 to 16 years old, from three secondary school teams participated in this experiment. The results that these basketball players obtained from this cognitive test were then used to compare with their physical fitness and basketball performance.

The Study of Super Hydrophobic Surfaces Using High Speed Shadowgraphy

The aim of this article is the measurement of the basic characteristic of superhydrophobic surfaces using high speed shadowgraphy. Here we describe the novel patented system for the industrial production of superhydrophobic surfaces. These surfaces were investigated with two optically based measurement methods: impinging drop and inclined wall. The results of the visualization and analysis help to state the suitable sample with superhydrophobic properties for mathematic simulation.

Thermal Properties of Lime-Pozzolan Plasters for Application in Hollow Bricks Systems

The effect of waste ceramic powder on the thermal properties of lime-pozzolana composites is investigated. At first, the measurements of effective thermal conductivity of lime-pozzolan composites are performed in dependence on moisture content from the dry state to fully water saturated state using a pulse method. Then, the obtained data are analyzed using two different homogenization techniques, namely the Lichtenecker’s and Dobson’s formulas, taking into account Wiener’s and Hashin/Shtrikman bounds. 

Effect of Different Tillage Systems on Soil Properties and Production on Wheat, Maize and Soybean Crop

Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and crop yield. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1 - to assess the effects of tillage systems (Conventional System (CS), Minimum Tillage (MT), No-Tillage (NT)) on soil compaction, soil temperature, soil moisture and soil respiration and 2- to establish the effect of the changes on the production of wheat, maize and soybean. Five treatments were installed: CS-plough; MT-paraplow, chisel, rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this; soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15cm of soil depth and increased the soil temperature by 0.5-2.20C. Water dynamics and soil temperature showed no differences on the effect of crop yields. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the four conservation tillage measures decreased soil respiration, with the best effects of no-tillage. Although wheat production at MT and NT applications, had no significant differences soybean production was significantly affected from MT and NT applications. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility.

Pulse Oximeter Concept for Vascular Occlusion Test

Microcirculatory dysfunction is very common in sepsis and may results in organ failure and increased risk of death. Analyzing oxygen utilization can potentially assess microcirculation function of an individual. In this study, a modified pulse oximeter is used to extract information signals due to absorption of red (R) and infrared (IR) light. IR and R signal are related to the overall blood volume and reduced hemoglobin, respectively. Differences between these two signals thus represent the amount of oxygenated hemoglobin. Avascular occlusion test has been conducted on healthy individuals to validate the pulse oximeter concept. In this test, both R and IR signals rapidly changed according to the occlusion process. The pulse oximeter concept presented is capable of extracting valuable information to assess microcirculation condition. Implementing this concept on ICU patients has the potential to aid sepsis diagnosis and provide more accurate tracking of patient state and sepsis status.

Video-Based Face Recognition Based On State-Space Model

This paper proposes a video-based framework for face recognition to identify which faces appear in a video sequence. Our basic idea is like a tracking task - to track a selection of person candidates over time according to the observing visual features of face images in video frames. Hence, we employ the state-space model to formulate video-based face recognition by dividing this problem into two parts: the likelihood and the transition measures. The likelihood measure is to recognize whose face is currently being observed in video frames, for which two-dimensional linear discriminant analysis is employed. The transition measure estimates the probability of changing from an incorrect recognition at the previous stage to the correct person at the current stage. Moreover, extra nodes associated with head nodes are incorporated into our proposed state-space model. The experimental results are also provided to demonstrate the robustness and efficiency of our proposed approach.

A Preliminary Study on Effects of Community Structures on Epidemic Spreading and Detection in Complex Networks

Community structures widely exist in almost all real-life networks. Extensive researches have been carried out on detecting community structures in complex networks. However, many aspects of how community structures may affect the dynamics and properties of complex networks still remain unclear. In this work, we examine the impacts of community structures on the epidemic spreading and detection in complex networks. Extensive simulation results show that community structures may not help decrease the infection size at steady state, yet they could indeed help slow down the infection spreading. Also, networks with strong community structures may expect to have a smaller average infection size when equipped with a number of sparsely deployed monitors.

Comparison of Material Constitutive Models Used in FEA of Low Volume Roads

Appropriate and progressive tool for analyzing behavior of low volume roads are probabilistic models used in reliability analyses. The necessary part of the probabilistic model is the deterministic model of structural behavior. The FE model of low volume roads is created in the ANSYS software. It is able to determine the state of stress and deformation in any point of the structure and thus generate data required for the reliability analysis. The paper compares two material constitutive models used for modeling of unbound non-homogenous materials used in low volume roads. The first model is linear elastic model according to Hook theory (H model), the second one is nonlinear elastic-plastic Drucker-Prager model (D-P model).

Backcalculation of HMA Stiffness Based On Finite Element Model

Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.

Mechanical Equation of State in an Al-Li Alloy

Existence of plastic equation of state has been investigated by performing a series of load relaxation tests at various temperatures using an Al-Li alloy. A plastic equation of state is first developed from a simple kinetics consideration for a mechanical activation process of a leading dislocation piled up against grain boundaries. A series of load relaxation test has been conducted at temperatures ranging from 200 to 530oC to obtain the stress-strain rate curves. A plastic equation of state has been derived from a simple consideration of dislocation kinetics and confirmed by experimental results.

Regional Development Programs: A Reason for Them Failing

This paper contributes to the analysis of the design of regional development programs. This is a case study the birth, life, death and afterlife of a stately development program in Norway, supporting diffusion of innovations by promoting e-business in SMEs (small and medium sized enterprises). The study shows that joint projects like regional development programs have to be designed such that the present value of the future benefits always exceeds the present value of the future effort for all stakeholders vital for the survival of the project. The study also indicate that a development program not always have one common goal which all the stakeholders agree upon. There are several stakeholders who may have different goals by playing a part in the realization of the program. Even if some parties evaluate the results of a development program as a failure, other may have attained their goals. The lessons learned from this study may advise the designers of development programs involving many independent stakeholders. There is a lack of research examining failing development programs, investigating the reasons for it to be considered a failure. This paper shows why a development program was terminated and gives hint to how joint programs could be designed in order for the program to deliver the wanted results to all the key stakeholders.

Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil

A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.

Strength and Permeability Characteristics of Steel Fibre Reinforced Concrete

The results reported in this paper are the part of an extensive laboratory investigation undertaken to study the effects of fibre parameters on the permeability and strength characteristics of steel fibre reinforced concrete (SFRC). The effect of varying fibre content and curing age on the water permeability, compressive and split tensile strengths of SFRC was investigated using straight steel fibres having an aspect ratio of 65. Samples containing three different weight fractions of 1.0%, 2.0% and 4.0% were cast and tested for permeability and strength after 7, 14, 28 and 60 days of curing. Plain concrete samples were also cast and tested for reference purposes. Permeability was observed to decrease significantly with the addition of steel fibres and continued to decrease with increasing fibre content and increasing curing age. An exponential relationship was observed between permeability and compressive and split tensile strengths for SFRC as well as PCC. To evaluate the effect of fibre content on the permeability and strength characteristics, the Analysis of Variance (ANOVA) statistical method was used. An a level (probability of error) of 0.05 was used for ANOVA test. Regression analysis was carried out to develop relationship between permeability, compressive strength and curing age.

A Critical Review on the Development of a Theoretical Framework for Managing Environmental Impacts of Construction Project

Construction industry is considered as one of the main contributor of natural resources depletion, responsible for high level pollution and it is one of the attributes that pose climate changes and other environmental threats. A lot of efforts had and have been done to reduce and control these impacts. Project Environmental Management (PEM) includes the processes required to ensure that the impacts of the project execution to the surrounding environment will remain within the limits stated in legal permits. The main aim of most of researches conducted managing Environmental Impacts (EI) is to protect earth planet from pollution. Those researches are presenting four major environmental elements; Environmental Management Systems (EMS), Environmental Design (ED), Environmental Planning (EP) and Environmental Impacts Assessments (EIA). Although everything has been said about environmental management for construction projects, but almost everything remains to be said and therefore to be explored or rediscovered because incontestably, almost everything remains to be done. This paper aimed at reviewing some of what has been said about PEM. Also one of its objectives is to explore and rediscover the whole view of managing the EI problems by proposing a framework that based on the relation between these environmental researches.

Mechanical Quadrature Methods for Solving First Kind Boundary Integral Equations of Stationary Stokes Problem

By means of Sidi-Israeli’s quadrature rules, mechanical quadrature methods (MQMs) for solving the first kind boundary integral equations (BIEs) of steady state Stokes problem are presented. The convergence of numerical solutions by MQMs is proved based on Anselone’s collective compact and asymptotical compact theory, and the asymptotic expansions with the odd powers of the errors are provided, which implies that the accuracy of the approximations by MQMs possesses high accuracy order O (h3). Finally, the numerical examples show the efficiency of our methods.