Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development

Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.

A Study to Design a Survey to Encourage the University-Industry Relation

The purpose of this research is to present a survey to be applied to professors of public universities, to identify the factors that benefit or hinder the university-industry relation. Hence, this research studies some elements that integrate the variables: Knowledge management, technology management, and technology transfer; to define the existence of a relation between these variables and the industry necessities of innovation. This study is exploratory, descriptive and non-experimental. The research question is: What is the impact of the knowledge management, the technology management, and the technology transfer, made by administrative support areas of the public universities, in the industries innovation? Thus, literature review was made to identify some elements that should be considered to design a survey that allows to obtain valid information to the study variables. After this, the survey was developed, and the Content Validity Analysis was made through the Lawshe Model. The analysis indicated that the Content Validity Index (CVI) was 0.80. Hence, it was determined that this survey presents acceptable psychometric properties to be used as an evaluation tool.

South Africa’s Industrial Expansion – The Role of Technology Transfer

The paper reviews South Africa’s industrialization, the basis of its formation and to establish whether it can be expanded using technology transfer mechanisms principles. It also seek to draw comparisons from other industrialized countries and as a baseline, and take lessons on how these industrialized countries have achieved their secondary industrialization; hence they are known as the developed countries. It identifies the challenges faced by South Africa’s current industrial base and recommend ways that could be meaningful in assisting it to be expandable. It also seeks to contribute to the existing body of knowledge on industrialization and technology transfer in advancing industry formation. It is also the intention of the paper to look at best principles outlined in operations management theories on how they could be of value in strengthening industrial formation and expansion. These principles include but not limited to the application of lean manufacturing principles, however they are not only applicable to the manufacturing sector but to any business optimization strategy. There will be emphasize on the role of the primary sector in South Africa’s industrialization and the opportunities it ought to bring in strengthening and harnessing the success of the secondary sector formation.

Supporting Technology Transfer with Communities and Social Software Solutions

In order to bridge the gap between research and industry, promoting technology and knowledge transfer becomes increasingly important. Especially small- and medium-sized enterprises, having only little R&D resources themselves, depend on external technology development activities for remaining innovative. Academia research on the other hand needs potential industrial partners, who are capable and willing to commercialize their technologies as most public funding programs require some sort of technology transfer or dissemination activities. Modern web technologies offer more and more “social” functionalities and open up new ways of user interaction. In the past years several technology transfer platforms were developed, making use of modern web technologies in order to enable and support technology transfer. In this paper we report on the results of a state-of-the art analyses of existing technology transfer platforms, point out their advantages and deficits and give a perspective to the development of an improved technology transfer platform.

The Transfer of Energy Technologies in a Developing Country Context Towards Improved Practice from Past Successes and Failures

Technology transfer of renewable energy technologies is very often unsuccessful in the developing world. Aside from challenges that have social, economic, financial, institutional and environmental dimensions, technology transfer has generally been misunderstood, and largely seen as mere delivery of high tech equipment from developed to developing countries or within the developing world from R&D institutions to society. Technology transfer entails much more, including, but not limited to: entire systems and their component parts, know-how, goods and services, equipment, and organisational and managerial procedures. Means to facilitate the successful transfer of energy technologies, including the sharing of lessons are subsequently extremely important for developing countries as they grapple with increasing energy needs to sustain adequate economic growth and development. Improving the success of technology transfer is an ongoing process as more projects are implemented, new problems are encountered and new lessons are learnt. Renewable energy is also critical to improve the quality of lives of the majority of people in developing countries. In rural areas energy is primarily traditional biomass. The consumption activities typically occur in an inefficient manner, thus working against the notion of sustainable development. This paper explores the implementation of technology transfer in the developing world (sub-Saharan Africa). The focus is necessarily on RETs since most rural energy initiatives are RETs-based. Additionally, it aims to highlight some lessons drawn from the cited RE projects and identifies notable differences where energy technology transfer was judged to be successful. This is done through a literature review based on a selection of documented case studies which are judged against the definition provided for technology transfer. This paper also puts forth research recommendations that might contribute to improved technology transfer in the developing world. Key findings of this paper include: Technology transfer cannot be complete without satisfying pre-conditions such as: affordability, maintenance (and associated plans), knowledge and skills transfer, appropriate know how, ownership and commitment, ability to adapt technology, sound business principles such as financial viability and sustainability, project management, relevance and many others. It is also shown that lessons are learnt in both successful and unsuccessful projects.

Towards An Integrated Model for Academia- Industry Interface in India

Academia-industry relationship is not like that of technology donator-acceptor, but is of interactive and collaborative nature, acknowledging and ensuring mutual respect for each other-s role and contributions with an eye to attaining the true purpose of such relationships, namely, bringing about research-outcome synergy. Indeed, academia-industry interactions are a system that requires active and collaborative participations of all the stakeholders. This paper examines various issues associated with academic institutions and industry collaboration with special attention to the nature of resources and potentialities of stakeholders in the context of knowledge management. This paper also explores the barriers of academia-industry interaction. It identifies potential areas where industry-s participation with academia would be most effective for synergism. Lastly, this paper proposes an integrated model of several new collaborative approaches that are possible, mainly in the Indian scenario to strengthen academia-industry interface.