Enhancement of Biogas Production from Bakery Waste by Pseudomonas aeruginosa

Production of biogas from bakery waste was enhanced by additional bacterial cell. This study was divided into 2 steps. First step, grease waste from bakery industry-s grease trap was initially degraded by Pseudomonas aeruginosa. The concentration of byproduct, especially glycerol, was determined and found that glycerol concentration increased from 12.83% to 48.10%. Secondary step, 3 biodigesters were set up in 3 different substrates: non-degraded waste as substrate in first biodigester, degraded waste as substrate in secondary biodigester, and degraded waste mixed with swine manure in ratio 1:1 as substrate in third biodigester. The highest concentration of biogas was found in third biodigester that was 44.33% of methane and 63.71% of carbon dioxide. The lower concentration at 24.90% of methane and 18.98% of carbon dioxide was exhibited in secondary biodigester whereas the lowest was found in non-degraded waste biodigester. It was demonstrated that the biogas production was greatly increased with the initial grease waste degradation by Pseudomonas aeruginosa.

Enhancement of Shape Description and Representation by Slope

Representation and description of object shapes by the slopes of their contours or borders are proposed. The idea is to capture the essence of the features that make it easier for a shape to be stored, transmitted, compared and recognized. These features must be independent of translation, rotation and scaling of the shape. A approach is proposed to obtain high performance, efficiency and to merge the boundaries into sequence of straight line segments with the fewest possible segments. Evaluation on the performance of the proposed method is based on its comparison with established method of object shape description.

Higher Frequency Modeling of Synchronous Exciter Machines by Equivalent Circuits and Transfer Functions

In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.

Experimental Investigation on the Effect of CO2 and WAG Injection on Permeability Reduction Induced by Asphaltene Precipitation in Light Oil

Permeability reduction induced by asphaltene precipitation during gas injection is one of the serious problems in the oil industry. This problem can lead to formation damage and decrease the oil production rate. In this work, Malaysian light oil sample has been used to investigate the effect CO2 injection and Water Alternating Gas (WAG) injection on permeability reduction. In this work, dynamic core flooding experiments were conducted to study the effect of CO2 and WAG injection on the amount of asphaltene precipitated. Core properties after displacement were inspected for any permeability reduction to study the effect of asphaltene precipitation on rock properties. The results showed that WAG injection gave less asphaltene precipitation and formation damage compared to CO2 injection. The study suggested that WAG injection can be one of the important factors of managing asphaltene precipitation.

Treatment of Biowaste (Generated in Biodiesel Process) - A New Strategy for Green Environment and Horticulture Crop

Recent research on seeds of bio-diesel plants like Jatropha curcas, constituting 40-50% bio-crude oil indicates its potential as one of the most promising alternatives to conventional sources of energy. Also, limited studies on utilization of de-oiled cake have revealed that Jatropha bio-waste has good potential to be used as organic fertilizers produced via aerobic and anaerobic treatment. However, their commercial exploitation has not yet been possible. The present study aims at developing appropriate bio-processes and formulations utilizing Jatropha seed cake as organic fertilizer, for improving the growth of Polianthes tuberose L. (Tuberose). Pot experiments were carried out by growing tuberose plants on soil treated with composted formulations of Jatropha de-oiled cake, Farm Yard Manure (FYM) and inorganic fertilizers were also blended in soil. The treatment was carried out through soil amendment as well as foliar spray. The growth and morphological parameters were monitored for entire crop cycle. The growth Length and number of leaves, spike length, rachis length, number of bulb per plant and earliness of sprouting of bulb and yield enhancement were comparable to that achieved under inorganic fertilizer. Furthermore, performance of inorganic fertilizer also showed an improvement when blended with composted bio-waste. These findings would open new avenues for Jatropha based bio-wastes to be composted and used as organic fertilizers for commercial floriculture.

Material Defects Identification in Metal Ceramic Fixed Partial Dentures by En-Face Polarization Sensitive Optical Coherence Tomography

The fixed partial dentures are mainly used in the frontal part of the dental arch because of their great esthetics. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The purpose of this study is to evaluate the capability of Polarization Sensitive Optical Coherence Tomography (PSOCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.

3D Numerical Simulation on Annular Diffuser Temperature Distribution Enhancement by Different Twist Arrangement

The influence of twist arrangement on the temperature distribution in an annular diffuser fitted with twisted rectangular hub is investigated. Different pitches (Y = 120 mm, 100 mm, 80 mm, and 60 mm) for the twist arrangements are simulated to be compared. The geometry of the annular diffuser and the inlet condition for the hub arrangements are kept constant. The result reveals that using twisted rectangular hub insert with different pitches will force the temperature to distribute in a circular direction. However, temperature distribution will be enhanced with the length pitch increases.

Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach

In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.

Numerical Analysis of Concrete Crash Barriers

Reinforced concrete crash barriers used in road traffic must meet a number of criteria. Crash barriers are laid lengthwise, one behind another, and joined using specially designed steel locks. While developing BSV reinforced concrete crash barriers (type ŽPSV), experiments and calculations aimed to optimize the shape of a newly designed lock and the reinforcement quantity and distribution in a crash barrier were carried out. The tension carrying capacity of two parallelly joined locks was solved experimentally. Based on the performed experiments, adjustments of nonlinear properties of steel were performed in the calculations. The obtained results served as a basis to optimize the lock design using a computational model that takes into account the plastic behaviour of steel and the influence of the surrounding concrete [6]. The response to the vehicle impact has been analyzed using a specially elaborated complex computational model, comprising both the nonlinear model of the damping wall or crash barrier and the detailed model of the vehicle [7].

Efficient Moment Frame Structure

A different concept for designing and detailing of reinforced concrete precast frame structures is analyzed in this paper. The new detailing of the joints derives from the special hybrid moment frame joints. The special reinforcements of this alternative detailing, named modified special hybrid joint, are bondless with respect to both column and beams. Full scale tests were performed on a plan model, which represents a part of 5 story structure, cropped in the middle of the beams and columns spans. Theoretical approach was developed, based on testing results on twice repaired model, subjected to lateral seismic type loading. Discussion regarding the modified special hybrid joint behavior and further on widening research needed concludes the presentation.

An Efficient Cache Replacement Strategy for the Hybrid Cache Consistency Approach

Caching was suggested as a solution for reducing bandwidth utilization and minimizing query latency in mobile environments. Over the years, different caching approaches have been proposed, some relying on the server to broadcast reports periodically informing of the updated data while others allowed the clients to request for the data whenever needed. Until recently a hybrid cache consistency scheme Scalable Asynchronous Cache Consistency Scheme SACCS was proposed, which combined the two different approaches benefits- and is proved to be more efficient and scalable. Nevertheless, caching has its limitations too, due to the limited cache size and the limited bandwidth, which makes the implementation of cache replacement strategy an important aspect for improving the cache consistency algorithms. In this thesis, we proposed a new cache replacement strategy, the Least Unified Value strategy (LUV) to replace the Least Recently Used (LRU) that SACCS was based on. This paper studies the advantages and the drawbacks of the new proposed strategy, comparing it with different categories of cache replacement strategies.

A Framework to Support the Design of Mobile Applications

This paper introduces a framework that aims to support the design and development of mobile services. The traditional innovation process and its supporting instruments in form of creativity tools, acceptance research and user-generated content analysis are screened for potentials for improvement. The result is a reshaped innovation process where acceptance research and usergenerated content analysis are fully integrated within a creativity tool. Advantages of this method are the enhancement of design relevant information for developers and designers and the possibility to forecast market success.

Cultural Integration as a Factor of Genesis of the Kazakh Nation in the Conditions of Multicultural Society

The article analyses historical aspects of the formation of the Kazakh nation in the conditions of the multicultural society. The authors underline cultural integration as a significant stage of the cultural advancement of the Kazakh nation. The transition to the modern-style houses, the adoption and development of the secular education gave a rise to the development of the society and culture on the whole.

Ocean Wave Kinetic Energy Harvesting System for Automated Sub Sea Sensors

This paper presents an overview of the Ocean wave kinetic energy harvesting system. Energy harvesting is a concept by which energy is captured, stored, and utilized using various sources by employing interfaces, storage devices, and other units. Ocean wave energy harvesting in which the kinetic and potential energy contained in the natural oscillations of Ocean waves are converted into electric power. The kinetic energy harvesting system could be used for a number of areas. The main applications that we have discussed in this paper are to how generate the energy from Ocean wave energy (kinetic energy) to electric energy that is to eliminate the requirement for continual battery replacement.

Determining the Maximum Lateral Displacement Due to Sever Earthquakes without Using Nonlinear Analysis

For Seismic design, it is important to estimate, maximum lateral displacement (inelastic displacement) of the structures due to sever earthquakes for several reasons. Seismic design provisions estimate the maximum roof and storey drifts occurring in major earthquakes by amplifying the drifts of the structures obtained by elastic analysis subjected to seismic design load, with a coefficient named “displacement amplification factor" which is greater than one. Here, this coefficient depends on various parameters, such as ductility and overstrength factors. The present research aims to evaluate the value of the displacement amplification factor in seismic design codes and then tries to propose a value to estimate the maximum lateral structural displacement from sever earthquakes, without using non-linear analysis. In seismic codes, since the displacement amplification is related to “force reduction factor" hence; this aspect has been accepted in the current study. Meanwhile, two methodologies are applied to evaluate the value of displacement amplification factor and its relation with the force reduction factor. In the first methodology, which is applied for all structures, the ratio of displacement amplification and force reduction factors is determined directly. Whereas, in the second methodology that is applicable just for R/C moment resisting frame, the ratio is obtained by calculating both factors, separately. The acquired results of these methodologies are alike and estimate the ratio of two factors from 1 to 1.2. The results indicate that the ratio of the displacement amplification factor and the force reduction factor differs to those proposed by seismic provisions such as NEHRP, IBC and Iranian seismic code (standard no. 2800).

Analysis of S.P.O Techniques for Prediction of Dynamic Behavior of the Plate

In most cases, it is considerably difficult to directly measure structural vibration with a lot of sensors because of complex geometry, time and equipment cost. For this reason, this paper deals with the problem of locating sensors on a plate model by four advanced sensor placement optimization (S.P.O) techniques. It also suggests the evaluation index representing the characteristic of orthogonal between each of natural modes. The index value provides the assistance to selecting of proper S.P.O technique and optimal positions for monitoring of dynamic systems without the experiment.

Optimal Compensation of Reactive Power in the Restructured Distribution Network

In this paper optimal capacitor placement problem has been formulated in a restructured distribution network. In this scenario the distribution network operator can consider reactive energy also as a service that can be sold to transmission system. Thus search for optimal location, size and number of capacitor banks with the objective of loss reduction, maximum income from selling reactive energy to transmission system and return on investment for capacitors, has been performed. Results is influenced with economic value of reactive energy, therefore problem has been solved for various amounts of it. The implemented optimization technique is genetic algorithm. For any value of reactive power economic value, when reverse of investment index increase and change from zero or negative values to positive values, the threshold value of selling reactive power has been obtained. This increasing price of economic parameter is reasonable until the network losses is less than loss before compensation.

Design of an Innovative Accelerant Detector

Today, canines are still used effectively in acceleration detection situation. However, this method is becoming impractical in modern age and a new automated replacement to the canine is required. This paper reports the design of an innovative accelerant detector. Designing an accelerant detector is a long process as is any design process; therefore, a solution to the need for a mobile, effective accelerant detector is hereby presented. The device is simple and efficient to ensure that any accelerant detection can be conducted quickly and easily. The design utilizes Ultra Violet (UV) light to detect the accelerant. When the UV light shines on an accelerant, the hydrocarbons in the accelerant emit florescence. The advantages of using the UV light to detect accelerant are also outlined in this paper. The mobility of the device is achieved by using a Direct Current (DC) motor to run tank tracks. Tank tracks were chosen as to ensure that the device will be mobile in the rough terrain of a fire site. The materials selected for the various parts are also presented. A Solid Works Simulation was also conducted on the stresses in the shafts and the results are presented. This design is an innovative solution which offers a user friendly interface. The design is also environmentally friendly, ecologically sound and safe to use.

Field and Petrographic Relationships between the Charnockitic and Associated Granitic Rock, Akure Area, Southwestern Nigeria

The charnockitic and associated granitic rocks of Akure area were studied for their field and petrographic relationship's. The outcrops locations were plotted in Surfer 8. The granitic rock exhibits a porphyritic texture and outcrops in the north-eastern side of the study area while the charnockitics outcrop in the central/western part. An essentially dark coloured and fine grained intrusive exhibiting xenoliths and xenocrysts (plagioclase phenocrysts) of the granite outcrops between the granitic and charnockitic rocks. Mineralogically, the central rock combines the content of the other two indicating that it is most likely a product of their hybridization. The charnockitic magma is believed to have intruded and assimilated the granite substantially thereby contaminating itself and consequently emplacing the hybrid. The presented model of emplacement elucidates the hybridization proposal. Conclusively, the charnockitics are believed to be (a) younger than the granite, (b) of Pan-African age and (c) of igneous origin.

Formation of Nanosize Phases under Thermomechanical Strengthening of Low Carbon Steel

A study of the H-beam's nanosize structure phase states after thermomechanical strengthening was carried out by TEM. The following processes were analyzed. 1. The dispersing of the cementite plates by cutting them by moving dislocations. 2. The dissolution of cementite plates and repeated precipitation of the cementite particles on the dislocations, the boundaries, subgrains and grains. 3. The decay of solid solution of carbon in the α-iron after "self-tempering" of martensite. 4. The final transformation of the retained austenite in beinite with α-iron particles and cementite formation. 5. The implementation of the diffusion mechanism of γ ⇒ α transformation.