Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%-80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.

Small Sample Bootstrap Confidence Intervals for Long-Memory Parameter

The log periodogram regression is widely used in empirical applications because of its simplicity, since only a least squares regression is required to estimate the memory parameter, d, its good asymptotic properties and its robustness to misspecification of the short term behavior of the series. However, the asymptotic distribution is a poor approximation of the (unknown) finite sample distribution if the sample size is small. Here the finite sample performance of different nonparametric residual bootstrap procedures is analyzed when applied to construct confidence intervals. In particular, in addition to the basic residual bootstrap, the local and block bootstrap that might adequately replicate the structure that may arise in the errors of the regression are considered when the series shows weak dependence in addition to the long memory component. Bias correcting bootstrap to adjust the bias caused by that structure is also considered. Finally, the performance of the bootstrap in log periodogram regression based confidence intervals is assessed in different type of models and how its performance changes as sample size increases.

Vertex Configurations and Their Relationship on Orthogonal Pseudo-Polyhedra

Vertex configuration for a vertex in an orthogonal pseudo-polyhedron is an identity of a vertex that is determined by the number of edges, dihedral angles, and non-manifold properties meeting at the vertex. There are up to sixteen vertex configurations for any orthogonal pseudo-polyhedron (OPP). Understanding the relationship between these vertex configurations will give us insight into the structure of an OPP and help us design better algorithms for many 3-dimensional geometric problems. In this paper, 16 vertex configurations for OPP are described first. This is followed by a number of formulas giving insight into the relationship between different vertex configurations in an OPP. These formulas will be useful as an extension of orthogonal polyhedra usefulness on pattern analysis in 3D-digital images.

Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis

The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.

Massive Lesions Classification using Features based on Morphological Lesion Differences

Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensitivity (percentage of pathological ROIs correctly classified) and specificity (percentage of non-pathological ROIs correctly classified) will be presented through the Receive Operating Characteristic curve (ROC). In particular the best performances are 88% ± 1 of area under ROC curve obtained with the Feed Forward Neural Network.

ICF Neutron Detection Techniques Based on Doped ZnO Crystal

Ultrafast doped zinc oxide crystal promised us a good opportunity to build new instruments for ICF fusion neutron measurement. Two pulsed neutron detectors based on ZnO crystal wafer have been conceptually designed, the superfast ZnO timing detector and the scintillation recoil proton neutron detection system. The structure of these detectors was presented, and some characters were studied as well. The new detectors could be much faster than existing systems, and would be more competent for ICF neutron diagnostics.

Improved Modulo 2n +1 Adder Design

Efficient modulo 2n+1 adders are important for several applications including residue number system, digital signal processors and cryptography algorithms. In this paper we present a novel modulo 2n+1 addition algorithm for a recently represented number system. The proposed approach is introduced for the reduction of the power dissipated. In a conventional modulo 2n+1 adder, all operands have (n+1)-bit length. To avoid using (n+1)-bit circuits, the diminished-1 and carry save diminished-1 number systems can be effectively used in applications. In the paper, we also derive two new architectures for designing modulo 2n+1 adder, based on n-bit ripple-carry adder. The first architecture is a faster design whereas the second one uses less hardware. In the proposed method, the special treatment required for zero operands in Diminished-1 number system is removed. In the fastest modulo 2n+1 adders in normal binary system, there are 3-operand adders. This problem is also resolved in this paper. The proposed architectures are compared with some efficient adders based on ripple-carry adder and highspeed adder. It is shown that the hardware overhead and power consumption will be reduced. As well as power reduction, in some cases, power-delay product will be also reduced.

Effect of Clustering on Energy Efficiency and Network Lifetime in Wireless Sensor Networks

Wireless Sensor Network is Multi hop Self-configuring Wireless Network consisting of sensor nodes. The deployment of wireless sensor networks in many application areas, e.g., aggregation services, requires self-organization of the network nodes into clusters. Efficient way to enhance the lifetime of the system is to partition the network into distinct clusters with a high energy node as cluster head. The different methods of node clustering techniques have appeared in the literature, and roughly fall into two families; those based on the construction of a dominating set and those which are based solely on energy considerations. Energy optimized cluster formation for a set of randomly scattered wireless sensors is presented. Sensors within a cluster are expected to be communicating with cluster head only. The energy constraint and limited computing resources of the sensor nodes present the major challenges in gathering the data. In this paper we propose a framework to study how partially correlated data affect the performance of clustering algorithms. The total energy consumption and network lifetime can be analyzed by combining random geometry techniques and rate distortion theory. We also present the relation between compression distortion and data correlation.

The Risk and Value Engineering Structures and their Integration with Industrial Projects Management (A Case Study on I. K.Corporation)

Value engineering is an efficacious contraption for administrators to make up their minds. Value perusals proffer the gaffers a suitable instrument to decrease the expenditures of the life span, quality amelioration, structural improvement, curtailment of the construction schedule, longevity prolongation or a merging of the aforementioned cases. Subjecting organizers to pressures on one hand and their accountability towards their pertinent fields together with inherent risks and ambiguities of other options on the other hand set some comptrollers in a dilemma utilization of risk management and the value engineering in projects manipulation with regard to complexities of implementing projects can be wielded as a contraption to identify and efface each item which wreaks unnecessary expenses and time squandering sans inflicting any damages upon the essential project applications. Of course It should be noted that implementation of risk management and value engineering with regard to the betterment of efficiency and functions may lead to the project implementation timing elongation. Here time revamping does not refer to time diminishing in the whole cases. his article deals with risk and value engineering conceptualizations at first. The germane reverberations effectuated due to its execution in Iran Khodro Corporation are regarded together with the joint features and amalgamation of the aforesaid entia; hence the proposed blueprint is submitted to be taken advantage of in engineering and industrial projects including Iran Khodro Corporation.

Meaning Chasing Kiddies: Children-s Perception of Metaphors Used in Printed Advertisements

Today-s children, who are born into a more colorful, more creative, more abstract and more accessible communication environment than their ancestors as a result of dizzying advances in technology, have an interesting capacity to perceive and make sense of the world. Millennium children, who live in an environment where all kinds of efforts by marketing communication are more intensive than ever are, from their early childhood on, subject to all kinds of persuasive messages. As regards advertising communication, it outperforms all the other marketing communication efforts in creating little consumer individuals and, as a result of processing of codes and signs, plays a significant part in building a world of seeing, thinking and understanding for children. Children who are raised with metaphorical expressions such as tales and riddles also meet that fast and effective meaning communication in advertisements. Children-s perception of metaphors, which help grasp the “product and its promise" both verbally and visually and facilitate association between them is the subject of this study. Stimulating and activating imagination, metaphors have unique advantages in promoting the product and its promise especially in regard to print advertisements, which have certain limitations. This study deals comparatively with both literal and metaphoric versions of print advertisements belonging to various product groups and attempts to discover to what extent advertisements are liked, recalled, perceived and are persuasive. The sample group of the study, which was conducted in two elementary schools situated in areas that had different socioeconomic features, consisted of children aged 12.

Effects of Superheating on Thermodynamic Performance of Organic Rankine Cycles

Recently ORC(Organic Rankine Cycle) has attracted much attention due to its potential in reducing consumption of fossil fuels and its favorable characteristics to exploit low-grade heat sources. In this work thermodynamic performance of ORC with superheating of vapor is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the evaporating temperature and the turbine inlet temperature on the characteristics of the system such as maximum possible work extraction from the given source, volumetric flow rate per 1 kW of net work and quality of the working fluid at turbine exit as well as thermal and exergy efficiencies. Results show that for a given source the thermal efficiency increases with decrease of the superheating but exergy efficiency may have a maximum value with respect to the superheating of the working fluid. Results also show that in selection of working fluid it is required to consider various criteria of performance characteristics as well as thermal efficiency.

Thermal Post-buckling of Shape Memory Alloy Composite Plates under Non-uniform Temperature Distribution

Aerospace vehicles are subjected to non-uniform thermal loading that may cause thermal buckling. A study was conducted on the thermal post-buckling of shape memory alloy composite plates subjected to the non-uniform tent-like temperature field. The shape memory alloy wires were embedded within the laminated composite plates to add recovery stress to the plates. The non-linear finite element model that considered the recovery stress of the shape memory alloy and temperature dependent properties of the shape memory alloy and composite matrix along with its source codes were developed. It was found that the post-buckling paths of the shape memory alloy composite plates subjected to various tentlike temperature fields were stable within the studied temperature range. The addition of shape memory alloy wires to the composite plates was found to significantly improve the post-buckling behavior of laminated composite plates under non-uniform temperature distribution.

A Low Complexity Frequency Offset Estimation for MB-OFDM based UWB Systems

A low-complexity, high-accurate frequency offset estimation for multi-band orthogonal frequency division multiplexing (MB-OFDM) based ultra-wide band systems is presented regarding different carrier frequency offsets, different channel frequency responses, different preamble patterns in different bands. Utilizing a half-cycle Constant Amplitude Zero Auto Correlation (CAZAC) sequence as the preamble sequence, the estimator with a semi-cross contrast scheme between two successive OFDM symbols is proposed. The CRLB and complexity of the proposed algorithm are derived. Compared to the reference estimators, the proposed method achieves significantly less complexity (about 50%) for all preamble patterns of the MB-OFDM systems. The CRLBs turn out to be of well performance.

Information Filtering using Index Word Selection based on the Topics

We have proposed an information filtering system using index word selection from a document set based on the topics included in a set of documents. This method narrows down the particularly characteristic words in a document set and the topics are obtained by Sparse Non-negative Matrix Factorization. In information filtering, a document is often represented with the vector in which the elements correspond to the weight of the index words, and the dimension of the vector becomes larger as the number of documents is increased. Therefore, it is possible that useless words as index words for the information filtering are included. In order to address the problem, the dimension needs to be reduced. Our proposal reduces the dimension by selecting index words based on the topics included in a document set. We have applied the Sparse Non-negative Matrix Factorization to the document set to obtain these topics. The filtering is carried out based on a centroid of the learning document set. The centroid is regarded as the user-s interest. In addition, the centroid is represented with a document vector whose elements consist of the weight of the selected index words. Using the English test collection MEDLINE, thus, we confirm the effectiveness of our proposal. Hence, our proposed selection can confirm the improvement of the recommendation accuracy from the other previous methods when selecting the appropriate number of index words. In addition, we discussed the selected index words by our proposal and we found our proposal was able to select the index words covered some minor topics included in the document set.

Effect of Replacement of Unripe Banana Flour for Rice Flour on Physical Properties and Resistant Starch Content of Rice Noodle

This work was conducted to improve the level of resistant starch (RS) in a rice noodle using unripe banana flour and to investigate the effect of substitution of unripe banana flour for rice flour on the physical properties of rice noodle. In order to prepare rice noodles, the unripe banana flour were replaced the rice flour with different degrees of substitutions including 0, 20, 40, 60, 80, and 100%. The results indicated that substitution of unripe banana flour was significantly affected the viscosity properties of noodle flour, color, cooking loss, RS and total starch content of noodle. It was found that the noodle prepared from 100% unripe banana indicated the greatest changes on the viscosity properties and color profiles. It also showed the highest values of cooking loss (2.53%), tensile strength (129.03%), and RS content (13.15%).

2-D Ablated Plasma Production Process for Pulsed Ion Beam-Solid Target Interaction

This paper presents a 2-D hydrodynamic model of the ablated plasma when irradiating a 50 μm Al solid target with a single pulsed ion beam. The Lagrange method is used to solve the moving fluid for the ablated plasma production and formation mechanism. In the calculations, a 10-ns-single-pulsed of ion beam with a total energy density of 120 J/cm2, is used. The results show that the ablated plasma was formed after 2 ns of ion beam irradiation and it started to expand right after 4-6 ns. In addition, the 2-D model give a better understanding of pulsed ion beam-solid target ablated plasma production and expansion process clearer.

Rule-Based Message Passing for Collaborative Application in Distributed Environments

In this paper, we describe a rule-based message passing method to support developing collaborative applications, in which multiple users share resources in distributed environments. Message communications of applications in collaborative environments tend to be very complex because of the necessity to manage context situations such as sharing events, access controlling of users, and network places. In this paper, we propose a message communications method based on unification of artificial intelligence and logic programming for defining rules of such context information in a procedural object-oriented programming language. We also present an implementation of the method as java classes.

Graph-Based Text Similarity Measurement by Exploiting Wikipedia as Background Knowledge

Text similarity measurement is a fundamental issue in many textual applications such as document clustering, classification, summarization and question answering. However, prevailing approaches based on Vector Space Model (VSM) more or less suffer from the limitation of Bag of Words (BOW), which ignores the semantic relationship among words. Enriching document representation with background knowledge from Wikipedia is proven to be an effective way to solve this problem, but most existing methods still cannot avoid similar flaws of BOW in a new vector space. In this paper, we propose a novel text similarity measurement which goes beyond VSM and can find semantic affinity between documents. Specifically, it is a unified graph model that exploits Wikipedia as background knowledge and synthesizes both document representation and similarity computation. The experimental results on two different datasets show that our approach significantly improves VSM-based methods in both text clustering and classification.

Customer-Supplier Collaboration in Casting Industry: a Review on Organizational and Human Aspects

Customer-supplier collaboration enables firms to achieve greater success than acting independently. Nevertheless, not many firms have fully utilized the potential of collaboration. This paper presents organizational and human related success factors for collaboration in manufacturing supply chains in casting industry. Our research approach was a case study including multiple cases. Data was gathered by interviews and group discussions in two different research projects. In the first research project we studied seven firms and in the second five. It was found that the success factors are interrelated, in other words, organizational and human factors together enable success but not any of them alone. Some of the found success factors are a culture of following agreements, and a speed of informing the partner about changes affecting to the product or the delivery chain.

An Experimental Study on Evacuated Tube Solar Collector for Heating of Air in India

A solar powered air heating system using one ended evacuated tubes is experimentally investigated. A solar air heater containing forty evacuated tubes is used for heating purpose. The collector surface area is about 4.44 m2. The length and outer diameters of the outer glass tube and absorber tube are 1500, 47 and 37 mm, respectively. In this experimental setup, we have a header (heat exchanger) of square shape (190 mm x 190 mm). The length of header is 1500 mm. The header consists of a hollow pipe in the center whose diameter is 60 mm through which the air is made to flow. The experimental setup contains approximately 108 liters of water. Water is working as heat collecting medium which collects the solar heat falling on the tubes. This heat is delivered to the air flowing through the header pipe. This heat flow is due to natural convection and conduction. The outlet air temperature depends upon several factors along with air flow rate and solar radiation intensity. The study has been done for both up-flow and down-flow of air in header in similar weather conditions, at different flow rates. In the present investigations the study has been made to find the effect of intensity of solar radiations and flow rate of air on the out let temperature of the air with time and which flow is more efficient. The obtained results show that the system is highly effective for the heating in this region. Moreover, it has been observed that system is highly efficient for the particular flow rate of air. It was also observed that downflow configuration is more effective than up-flow condition at all flow rates due to lesser losses in down-flow. The results show that temperature differences of upper head and lower head, both of water and surface of pipes on the respective ends is lower in down-flow.