Effect of Azespirilium Bacteria in Reducing Nitrogen Fertilizers (Urea) and the Interaction of it with Stereptomyces Sp due the Biological Control on the Wheat (Triticum Asstivum) Sustinibelation Culture

An experiment was conducted in October 2008 due the ability replacement plant associate biofertilizers by chemical fertilizers and the qualifying rate of chemical N fertilizers at the moment of using this biofertilizers and the interaction of this biofertilizer on each other. This field experiment has been done in Persepolis (Throne of Jamshid) and arrange by using factorial with the basis of randomized complete block design, in three replication Azespirilium SP bacteria has been admixed with consistence 108 cfu/g and inoculated with seeds of wheat, The streptomyces SP has been used in amount of 550 gr/ha and concatenated on clay and for the qualifying range of chemical fertilizer 4 level of N chemical fertilizer from the source of urea (N0=0, N1=60, N2=120, N3=180) has been used in this experiment. The results indicated there were Significant differences between levels of Nitrogen fertilizer in the entire characteristic which has been measured in this experiment. The admixed Azespirilium SP showed significant differences between their levels in the characteristics such as No. of fertile ear, No. of grain per ear, grain yield, grain protein percentage, leaf area index and the agronomic fertilizer use efficiency. Due the interaction streptomyses with Azespirilium SP bacteria this actinomycet didn-t show any statistically significant differences between it levels.

Design Methodology through Risk Assessment of Massive Water Retaining Structures

In the present paper the results of a numerical study are presented, numerical models were developed to simulate the behaviour of vertical massive dikes. The proposed models were developed according to the geometry, boundary conditions, loading conditions and initial conditions of a physical model taken as reference. The results obtained were compared to the experimental data. As far as the overall behaviour, the displacements and the failure mechanisms of the dikes is concerned, the numerical results were in good agreement with the experimental results, which clearly indicates a good quality of numerical modelling. The validated numerical models were used in a parametric study were the displacements and failure mechanisms were fully investigated. Out of the results obtained, some conclusions and recommendations related to the design of massive dikes are proposed.

Analysis of Combustion, Performance and Emission Characteristics of Turbocharged LHR Extended Expansion DI Diesel Engine

The fundamental aim of extended expansion concept is to achieve higher work done which in turn leads to higher thermal efficiency. This concept is compatible with the application of turbocharger and LHR engine. The Low Heat Rejection engine was developed by coating the piston crown, cylinder head inside with valves and cylinder liner with partially stabilized zirconia coating of 0.5 mm thickness. Extended expansion in diesel engines is termed as Miller cycle in which the expansion ratio is increased by reducing the compression ratio by modifying the inlet cam for late inlet valve closing. The specific fuel consumption reduces to an appreciable level and the thermal efficiency of the extended expansion turbocharged LHR engine is improved. In this work, a thermodynamic model was formulated and developed to simulate the LHR based extended expansion turbocharged direct injection diesel engine. It includes a gas flow model, a heat transfer model, and a two zone combustion model. Gas exchange model is modified by incorporating the Miller cycle, by delaying inlet valve closing timing which had resulted in considerable improvement in thermal efficiency of turbocharged LHR engines. The heat transfer model, calculates the convective and radiative heat transfer between the gas and wall by taking into account of the combustion chamber surface temperature swings. Using the two-zone combustion model, the combustion parameters and the chemical equilibrium compositions were determined. The chemical equilibrium compositions were used to calculate the Nitric oxide formation rate by assuming a modified Zeldovich mechanism. The accuracy of this model is scrutinized against actual test results from the engine. The factors which affect thermal efficiency and exhaust emissions were deduced and their influences were discussed. In the final analysis it is seen that there is an excellent agreement in all of these evaluations.

Measuring Teachers- Beliefs about Mathematics: A Fuzzy Set Approach

This paper deals with the application of a fuzzy set in measuring teachers- beliefs about mathematics. The vagueness of beliefs was transformed into standard mathematical values using a fuzzy preferences model. The study employed a fuzzy approach questionnaire which consists of six attributes for measuring mathematics teachers- beliefs about mathematics. The fuzzy conjoint analysis approach based on fuzzy set theory was used to analyze the data from twenty three mathematics teachers from four secondary schools in Terengganu, Malaysia. Teachers- beliefs were recorded in form of degrees of similarity and its levels of agreement. The attribute 'Drills and practice is one of the best ways of learning mathematics' scored the highest degree of similarity at 0. 79860 with level of 'strongly agree'. The results showed that the teachers- beliefs about mathematics were varied. This is shown by different levels of agreement and degrees of similarity of the measured attributes.

Factors Influencing the Success of Mobile Phone Entrepreneurs at Central Plaza

The purpose of this research was to study the factors that influenced the success of mobile phone entrepreneurs at Central Plaza. The sample group included 187 entrepreneurs at Central Plaza. A questionnaire was utilized as a tool to collect data. Statistics used in this research included frequency, percentage, mean, and standard deviation. Independent- sample t- test, one way ANOVA, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences.The findings disclosed that the majority of respondents were male between 25-40 years old, and held an undergraduate degree. The average income of respondents was between 15,001-25,000 baht. The majority of respondents had less than 5 years of working experience. In terms of personality, the findings revealed that expression and agreement were ranked at the highest level. Whereas, emotion stability, consciousness, open to new experience were ranked at high. From the hypotheses testing, the findings revealed that different genders had different success in their mobile phone business with different income from the last 6 months. However, difference in age, income, level of education, and experience affected the success in terms of income, number of customers, and overall success of business. Moreover, the factors of personalities included expression, agreement, emotion stability, consciousness, open to new experience, and competitive strategy. From the findings, these factors were able to predict mobile phone business success at 66.9 percent.

Decision Support System “Crop-9-DSS“ for Identified Crops

Application of Expert System in the area of agriculture would take the form of Integrated Crop Management decision aids and would encompass water management, fertilizer management, crop protection systems and identification of implements. In order to remain competitive, the modern farmer often relies on agricultural specialists and advisors to provide information for decision-making. An expert system normally composed of a knowledge base (information, heuristics, etc.), inference engine (analyzes knowledge base), and end user interface (accepting inputs, generating outputs). Software named 'CROP-9-DSS' incorporating all modern features like, graphics, photos, video clippings etc. has been developed. This package will aid as a decision support system for identification of pest and diseases with control measures, fertilizer recommendation system, water management system and identification of farm implements for leading crops of Kerala (India) namely Coconut, Rice, Cashew, Pepper, Banana, four vegetables like Amaranthus, Bhindi, Brinjal and Cucurbits. 'CROP-9-DSS' will act as an expert system to agricultural officers, scientists in the field of agriculture and extension workers for decision-making and help them in suggesting suitable recommendations.

Study The Effects of Conventional and Low Input Production System on Energy Efficiency of Silybum marianum L.

Medicinal plants are most suitable crops for ecological production systems because of their role in human health and the aim of sustainable agriculture to improve ecosystem efficiency and its products quality. Calculations include energy output (contents of energy in seed) and energy inputs (consumption of fertilizers, pesticides, labor, machines, fuel and electricity). The ratio of output of the production to inputs is called the energy outputs / inputs ratio or energy efficiency. One way to quantify essential parts of agricultural development is the energy flow method. The output / input energy ratio is proposed as the most comprehensive single factor in pursuing the objective of sustainability. Sylibum marianum L. is one of the most important medicinal plants in Iran and has effective role on health of growing population in Iran. The objective of this investigation was to find out energy efficiency in conventional and low input production system of Milk thistle. This investigation was carried out in the spring of 2005 – 2007 in the Research Station of Rangelands in Hamand - Damavand region of IRAN. This experiment was done in split-split plot based on randomized complete block design with 3 replications. Treatments were 2 production systems (Conventional and Low input system) in the main plots, 3 planting time (25 of March, 4 and 14 of April) in the sub plots and 2 seed types (Improved and Native of Khoozestan) in the sub-sub plots. Results showed that in conventional production system energy efficiency, because of higher inputs and less seed yield, was less than low input production system. Seed yield was 1199.5 and 1888 kg/ha in conventional and low input systems, respectively. Total energy inputs and out puts for conventional system was 10068544.5 and 7060515.9 kcal. These amounts for low input system were 9533885.6 and 11113191.8 kcal. Results showed that energy efficiency for seed production in conventional and low input system was 0.7 and 1.16, respectively. So, milk thistle seed production in low input system has 39.6 percent higher energy efficiency than conventional production system. Also, higher energy efficiency were found in sooner planting time (25 of March) and native seed of Khoozestan.

OHASD: The First On-Line Arabic Sentence Database Handwritten on Tablet PC

In this paper we present the first Arabic sentence dataset for on-line handwriting recognition written on tablet pc. The dataset is natural, simple and clear. Texts are sampled from daily newspapers. To collect naturally written handwriting, forms are dictated to writers. The current version of our dataset includes 154 paragraphs written by 48 writers. It contains more than 3800 words and more than 19,400 characters. Handwritten texts are mainly written by researchers from different research centers. In order to use this dataset in a recognition system word extraction is needed. In this paper a new word extraction technique based on the Arabic handwriting cursive nature is also presented. The technique is applied to this dataset and good results are obtained. The results can be considered as a bench mark for future research to be compared with.

Applications of AUSM+ Scheme on Subsonic, Supersonic and Hypersonic Flows Fields

The performance of Advection Upstream Splitting Method AUSM schemes are evaluated against experimental flow fields at different Mach numbers and results are compared with experimental data of subsonic, supersonic and hypersonic flow fields. The turbulent model used here is SST model by Menter. The numerical predictions include lift coefficient, drag coefficient and pitching moment coefficient at different mach numbers and angle of attacks. This work describes a computational study undertaken to compute the Aerodynamic characteristics of different air vehicles configurations using a structured Navier-Stokes computational technique. The CFD code bases on the idea of upwind scheme for the convective (convective-moving) fluxes. CFD results for GLC305 airfoil and cone cylinder tail fined missile calculated on above mentioned turbulence model are compared with the available data. Wide ranges of Mach number from subsonic to hypersonic speeds are simulated and results are compared. When the computation is done by using viscous turbulence model the above mentioned coefficients have a very good agreement with the experimental values. AUSM scheme is very efficient in the regions of very high pressure gradients like shock waves and discontinuities. The AUSM versions simulate the all types of flows from lower subsonic to hypersonic flow without oscillations.

Mobile Learning Implementation: Students- Perceptions in UTP

Mobile Learning (M-Learning) is a new technology which is to enhance current learning practices and activities for all people especially students and academic practitioners UTP is currently, implemented two types of learning styles which are conventional and electronic learning. In order to improve current learning approaches, it is necessary for UTP to implement m-learning in UTP. This paper presents a study on the students- perceptions on mobile utilization in the learning practices in UTP. Besides, this paper also presents a survey that was conducted among 82 students from System Analysis and Design (SAD) course in UTP. The survey includes basic information of mobile devices that have been used by the students, opinions on current learning practices and also the opinions regarding the m-learning implementation in the current learning practices especially in SAD course. Based on the results of the survey, majority of the students are using the mobile devices that can support m-learning environment. Other than that, students also agreed that current learning practices are ineffective and they believe that m-learning utilization can improve the effectiveness of current learning practices.

CFD Simulations to Validate Two and Three Phase Up-flow in Bubble Columns

Bubble columns have a variety of applications in absorption, bio-reactions, catalytic slurry reactions, and coal liquefaction; because they are simple to operate, provide good heat and mass transfer, having less operational cost. The use of Computational Fluid Dynamics (CFD) for bubble column becomes important, since it can describe the fluid hydrodynamics on both local and global scale. Euler- Euler two-phase fluid model has been used to simulate two-phase (air and water) transient up-flow in bubble column (15cm diameter) using FLUENT6.3. These simulations and experiments were operated over a range of superficial gas velocities in the bubbly flow and churn turbulent regime (1 to16 cm/s) at ambient conditions. Liquid velocity was varied from 0 to 16cm/s. The turbulence in the liquid phase is described using the standard k-ε model. The interactions between the two phases are described through drag coefficient formulations (Schiller Neumann). The objectives are to validate CFD simulations with experimental data, and to obtain grid-independent numerical solutions. Quantitatively good agreements are obtained between experimental data for hold-up and simulation values. Axial liquid velocity profiles and gas holdup profiles were also obtained for the simulation.

Structural Modelling of the LiCl Aqueous Solution: Using the Hybrid Reverse Monte Carlo (HRMC) Simulation

The Reverse Monte Carlo (RMC) simulation is applied in the study of an aqueous electrolyte LiCl6H2O. On the basis of the available experimental neutron scattering data, RMC computes pair radial distribution functions in order to explore the structural features of the system. The obtained results include some unrealistic features. To overcome this problem, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an energy constraint in addition to the commonly used constraints derived from experimental data. Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in pair partial distribution curves. This kind of study can be considered as a useful test for a defined interaction model for conventional simulation techniques.

Finite Element Study on Corono-Radicular Restored Premolars

Restoration of endodontically treated teeth is a common problem in dentistry, related to the fractures occurring in such teeth and to concentration of forces little information regarding variation of basic preparation guidelines in stress distribution has been available. To date, there is still no agreement in the literature about which material or technique can optimally restore endodontically treated teeth. The aim of the present study was to evaluate the influence of the core height and restoration materials on corono-radicular restored upper first premolar. The first step of the study was to achieve 3D models in order to analyze teeth, dowel and core restorations and overlying full ceramic crowns. The FEM model was obtained by importing the solid model into ANSYS finite element analysis software. An occlusal load of 100 N was conducted, and stresses occurring in the restorations, and teeth structures were calculated. Numerical simulations provide a biomechanical explanation for stress distribution in prosthetic restored teeth. Within the limitations of the present study, it was found that the core height has no important influence on the stress generated in coronoradicular restored premolars. It can be drawn that the cervical regions of the teeth and restorations were subjected to the highest stress concentrations.

Sustainable Water Utilization in Arid Region of Iran by Qanats

To make use of the limited amounts of water in arid region, the Iranians developed man-made underground water channels called qanats (kanats) .In fact, qanats may be considered as the first long-distance water transfer system. Qanats are an ancient water transfer system found in arid regions wherein groundwater from mountainous areas, aquifers and sometimes from rivers, was brought to points of re-emergence such as an oasis, through one or more underground tunnels. The tunnels, many of which were kilometers in length, had designed for slopes to provide gravitational flow. The tunnels allowed water to drain out to the surface by gravity to supply water to lower and flatter agricultural land. Qanats have been an ancient, sustainable system facilitating the harvesting of water for centuries in Iran, and more than 35 additional countries of the world such as India, Arabia, Egypt, North Africa, Spain and even to New world. There are about 22000 qanats in Iran with 274000 kilometers of underground conduits all built by manual labor. The amount of water of the usable qanats of Iran produce is altogether 750 to 1000 cubic meter per second. The longest chain of qanat is situated in Gonabad region in Khorasan province. It is 70 kilometers long. Qanats are renewable water supply systems that have sustained agricultural settlement on the Iranian plateau for millennia. The great advantages of Qanats are no evaporation during transit, little seepage , no raising of the water- table and no pollution in the area surrounding the conduits. Qanat systems have a profound influence on the lives of the water users in Iran, and conform to Iran-s climate. Qanat allows those living in a desert environment adjacent to a mountain watershed to create a large oasis in an otherwise stark environment. This paper explains qanats structure designs, their history, objectives causing their creation, construction materials, locations and their importance in different times, as well as their present sustainable role in Iran.

Influence of Distributed Generation on Congestion and LMP in Competitive Electricity Market

This paper presents the influence of distributed generation (DG) on congestion and locational marginal price (LMP) in an optimal power flow (OPF) based wholesale electricity market. The problem of optimal placement to manage congestion and reduce LMP is formulated for the objective of social welfare maximization. From competitive electricity market standpoint, DGs have great value when they reduce load in particular locations and at particular times when feeders are heavily loaded. The paper lies on the groundwork that solution to optimal mix of generation and transmission resources can be achieved by addressing congestion and corresponding LMP. Obtained as lagrangian multiplier associated with active power flow equation for each node, LMP gives the short run marginal cost (SRMC) of electricity. Specific grid locations are examined to study the influence of DG penetration on congestion and corresponding shadow prices. The influence of DG on congestion and locational marginal prices has been demonstrated in a modified IEEE 14 bus test system.

Person Identification by Using AR Model for EEG Signals

A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.

Simulation of Agri-Food Supply Chains

Supply chain management has become more challenging with the emerging trend of globalization and sustainability. Lately, research related to perishable products supply chains, in particular agricultural food products, has emerged. This is attributed to the additional complexity of managing this type of supply chains with the recently increased concern of public health, food quality, food safety, demand and price variability, and the limited lifetime of these products. Inventory management for agrifood supply chains is of vital importance due to the product perishability and customers- strive for quality. This paper concentrates on developing a simulation model of a real life case study of a two echelon production-distribution system for agri-food products. The objective is to improve a set of performance measures by developing a simulation model that helps in evaluating and analysing the performance of these supply chains. Simulation results showed that it can help in improving overall system performance.

Preparation and Characterisation of Chemically Activated Almond Shells by Optimization of Adsorption Parameters for Removal of Chromium VI from Aqueous Solutions

Activated carbon was prepared from agricultural waste “almond (Prunus amygdalus) nut shells" by chemical activation with phosphoric acid as an activating agent at 450 °C for 24 hr soaking time. The physical and chemical properties were analyzed. The adsorption of chromium VI from aqueous solution on almond nut shell activated carbon (ASAC) was investigated. The adsorption process parameters pH, agitation speed, agitation time, adsorbent dose were optimized. 98% of Cr VI was sorbed at pH 2 and stirring speed 200 rpm.. Surface structure showed that ASAC has a spongy type structure showing large number of pores

Production of Apricot Vinegar Using an Isolated Acetobacter Strain from Iranian Apricot

Vinegar or sour wine is a product of alcoholic and subsequent acetous fermentation of sugary precursors derived from several fruits or starchy substrates. This delicious food additive and supplement contains not less than 4 grams of acetic acid in 100 cubic centimeters at 20°C. Among the large number of bacteria that are able to produce acetic acid, only few genera are used in vinegar industry most significant of which are Acetobacter and Gluconobacter. In this research we isolated and identified an Acetobacter strain from Iranian apricot, a very delicious and sensitive summer fruit to decay, we gathered from fruit's stores in Isfahan, Iran. The main culture media we used were Carr, GYC, Frateur and an industrial medium for vinegar production. We isolated this strain using a novel miniature fermentor we made at Pars Yeema Biotechnologists Co., Isfahan Science and Technology Town (ISTT), Isfahan, Iran. The microscopic examinations of isolated strain from Iranian apricot showed gram negative rods to cocobacilli. Their catalase reaction was positive and oxidase reaction was negative and could ferment ethanol to acetic acid. Also it showed an acceptable growth in 5%, 7% and 9% ethanol concentrations at 30°C using modified Carr media after 24, 48 and 96 hours incubation respectively. According to its tolerance against high concentrations of ethanol after four days incubation and its high acetic acid production, 8.53%, after 144 hours, this strain could be considered as a suitable industrial strain for a production of a new type of vinegar, apricot vinegar, with a new and delicious taste. In conclusion this is the first report of isolation and identification of an Acetobacter strain from Iranian apricot with a very good tolerance against high ethanol concentrations as well as high acetic acid productivity in an acceptable incubation period of time industrially. This strain could be used in vinegar industry to convert apricot spoilage to a beneficiary product and mentioned characteristics have made it as an amenable strain in food and agricultural biotechnology.

Modeling of Single-Particle Impact in Abrasive Water Jet Machining

This work presents a study on the abrasive water jet (AWJ) machining. An explicit finite element analysis (FEA) of single abrasive particle impact on stainless steel 1.4304 (AISI 304) is conducted. The abrasive water jet machining is modeled by FEA software ABAQUS/CAE. Shapes of craters in FEM simulation results were used and compared with the previous experimental and FEM works by means of crater sphericity. The influence of impact angle and particle velocity was observed. Adaptive mesh domain is used to model the impact zone. Results are in good agreement with those obtained from the experimental and FEM simulation. The crater-s depth is also obtained for different impact angle and abrasive particle velocities.