Hemodynamic Characteristics in the Human Carotid Artery Model Induced by Blood-Arterial Wall Interactions

The characteristics of physiological blood flow in human carotid arterial bifurcation model have been numerically studied using a fully coupled fluid-structure interaction (FSI) analysis. This computational model with the fluid-structure interaction is constructed to investigate the flow characteristics and wall shear stress in the carotid artery. As the flow begins to decelerate after the peak flow, a large recirculation zone develops at the non-divider wall of both internal carotid artery (ICA) and external carotid artery (ECA) in FSI model due to the elastic energy stored in the expanding compliant wall. The calculated difference in wall shear stress (WSS) in both Non-FSI and FSI models is a range of between 5 and 11% at the mean WSS. The low WSS corresponds to regions of carotid artery that are more susceptible to atherosclerosis.

Fung’s Model Constants for Intracranial Blood Vessel of Human Using Biaxial Tensile Test Results

Mechanical properties of cerebral arteries are, due to their relationship with cerebrovascular diseases, of clinical worth. To acquire these properties, eight samples were obtained from middle cerebral arteries of human cadavers, whose death were not due to injuries or diseases of cerebral vessels, and tested within twelve hours after resection, by a precise biaxial tensile test device specially developed for the present study considering the dimensions, sensitivity and anisotropic nature of samples. The resulting stress-stretch curve was plotted and subsequently fitted to a hyperelastic three-parameter Fung model. It was found that the arteries were noticeably stiffer in circumferential than in axial direction. It was also demonstrated that the use of multi-parameter hyperelastic constitutive models is useful for mathematical description of behavior of cerebral vessel tissue. The reported material properties are a proper reference for numerical modeling of cerebral arteries and computational analysis of healthy or diseased intracranial arteries.

The Evaluation of Load-Bearing Capacity of the Planar CHS Joint Using Finite Modeling

The subject of this paper is to verify the behavior of the truss-type CHS joint which is beyond the scope of use of the EN 1993-1-8. This is performed by using the numerical modeling in program ANSYS and the analytical methods recommended in the CIDECT publication. The recommendations for numerical modeling of such types of joints as well as for evaluation of load-bearing capacity of the joint are given in this paper. The results from both analytical and numerical models are compared.

Assessment of Landslide Volume for Alishan Highway Based On Database of Rainfall-Induced Slope Failure

In this paper, a study of slope failures along the Alishan Highway is carried out. An innovative empirical model is developed based on 15-year records of rainfall-induced slope failures. The statistical models are intended for assessing the volume of landslide for slope failure along the Alishan Highway in the future. The rainfall data considered in the proposed models include the effective cumulative rainfall and the critical rainfall intensity. The effective cumulative rainfall is defined at the point when the curve of cumulative rainfall goes from steep to flat. Then, the rainfall thresholds of landslide are established for assessing the volume of landslide and issuing warning and/or closure for the Alishan Highway during a future extreme rainfall. Slope failures during Typhoon Saola in 2012 demonstrate that the new empirical model is effective and applicable to other cases with similar rainfall conditions.

Analysis of GI/M(n)/1/N Queue with Single Working Vacation and Vacation Interruption

This paper presents a finite buffer renewal input single working vacation and vacation interruption queue with state dependent services and state dependent vacations, which has a wide range of applications in several areas including manufacturing, wireless communication systems. Service times during busy period, vacation period and vacation times are exponentially distributed and are state dependent. As a result of the finite waiting space, state dependent services and state dependent vacation policies, the analysis of these queueing models needs special attention. We provide a recursive method using the supplementary variable technique to compute the stationary queue length distributions at pre-arrival and arbitrary epochs. An efficient computational algorithm of the model is presented which is fast and accurate and easy to implement. Various performance measures have been discussed. Finally, some special cases and numerical results have been depicted in the form of tables and graphs. 

Future Logistics - Challenges, Requirements and Solutions for Logistics Networks

The importance of logistics has changed enormously in the last few decades. While logistics was formerly one of the core functions of most companies, logistics or at least parts of their functions are nowadays outsourced to external logistic service providers in terms of contracts. As a result of this shift new business models like the fourth party logistics provider emerged, which designs, plans and monitors the resulting logistics networks. This new business model and topics such as Synchromodality or Big Data impose new requirements on the underlying IT, which cannot be met with conventional concepts and approaches. In this paper, the challenges of logistics network monitoring are outlined by using a scenario. The most common layers in a logical multilayered architecture for an information system are used to point out the arising challenges for IT. In addition, first appropriate solution approaches are introduced.  

Comparison of Two Interval Models for Interval-Valued Differential Evolution

The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks. 

Analysis of Mathematical Models and Their Application to Extreme Events

This paper discusses the application of extreme events distribution taking the Limpopo River Basin at Xai-Xai station, in Mozambique, as a case analysis. We analyze the extreme value concepts, namely Gumbel, Fréchet, Weibull and Generalized Extreme Value Distributions and then extrapolate the original data to 1000, 5000 and 10000 figures for further simulations and we compare their outcomes based on these three main distributions.

On One Mathematical Model for Filtration of Weakly Compressible Chemical Compound in the Porous Heterogeneous 3D Medium. Part I: Model Construction with the Aid of the Ollendorff Approach

A filtering problem of almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain is studied. In this work general approaches to the solution of twodimensional filtering problems in ananisotropic, inhomogeneous and multilayered medium are developed, and on the basis of the obtained results mathematical models are constructed (according to Ollendorff method) for studying the certain engineering and technical problem of filtering the almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain. For some of the formulated mathematical problems with additional requirements for the structure of the porous inhomogeneous medium, namely, its isotropy, spatial periodicity of its permeability coefficient, solution algorithms are proposed. Continuation of the current work titled ”On one mathematical model for filtration of weakly compressible chemical compound in the porous heterogeneous 3D medium. Part II: Determination of the reference directions of anisotropy and permeabilities on these directions” will be prepared in the shortest terms by the authors.

Mathematical Modeling of Uncompetitive Inhibition of Bi-Substrate Enzymatic Reactions

Currently, mathematical and computer modeling are widely used in different biological studies to predict or assess behavior of such a complex systems as a biological are. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions, which play an important role in different biochemical pathways. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions in the presence of uncompetitive inhibitors, as well as to describe in details the inhibition effects. Four models of uncompetitive inhibition were designed using different software packages. Particularly, uncompetitive inhibitor to the first [ES1] and the second ([ES1S2]; [FS2]) enzyme-substrate complexes have been studied. The simulation, using the same kinetic parameters for all models allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of uncompetitive inhibition. Besides, it has been shown that uncompetitive inhibitors exhibit specific selectivity depending on mechanism of bi-substrate enzymatic reaction. 

Batch and Continuous Packed Column Studies Biosorption by Yeast Supported onto Granular Pozzolana

The removal of chromium by living yeast biomass immobilized onto pozzolana was studied. The results obtained in batch experiments indicate that the immobilized yeast on to pozzolana is a excellent biosorbent of Cr(V) with a good removal rates of 85–90%. The initial concentration solution and agitation speed affected Cr(V) removal. The batch studies data were described using the Freundlich and Langmuir models, but the best fit was obtained with Langmuir model. The breakthrough curve from the continuous flow studies shows that immobilized yeast in the fixed-bed column is capable of decreasing Cr(VI) concentration from 15mg/l to a adequate level. 

TanSSe-L System PIM Manual Transformation to Moodle as a TanSSe-L System Specific PIM

Tanzania Secondary Schools e-Learning (TanSSe-L) system is a customized learning management system (LMS) developed to enable ICT support in teaching and learning functions. Methodologies involved in the development of TanSSe-L system are Object oriented system analysis and design with UML to create and model TanSSe-L system database structure in the form of a design class diagram, Model Driven Architecture (MDA) to provide a well defined process in TanSSe-L system development, where MDA conceptual layers were integrated with system development life cycle and customization of open source learning management system which was used during implementation stage to create a timely functional TanSSe-L system. Before customization, a base for customization was prepared. This was the manual transformation from TanSSe-L system platform independent models (PIM) to TanSSe-L system specific PIM. This paper presents how Moodle open source LMS was analyzed and prepared to be the TanSSe-L system specific PIM as applied by MDA.

FPGA Hardware Implementation and Evaluation of a Micro-Network Architecture for Multi-Core Systems

This paper presents the design, implementation and evaluation of a micro-network, or Network-on-Chip (NoC), based on a generic pipeline router architecture. The router is designed to efficiently support traffic generated by multimedia applications on embedded multi-core systems. It employs a simplest routing mechanism and implements the round-robin scheduling strategy to resolve output port contentions and minimize latency. A virtual channel flow control is applied to avoid the head-of-line blocking problem and enhance performance in the NoC. The hardware design of the router architecture has been implemented at the register transfer level; its functionality is evaluated in the case of the two dimensional Mesh/Torus topology, and performance results are derived from ModelSim simulator and Xilinx ISE 9.2i synthesis tool. An example of a multi-core image processing system utilizing the NoC structure has been implemented and validated to demonstrate the capability of the proposed micro-network architecture. To reduce complexity of the image compression and decompression architecture, the system use image processing algorithm based on classical discrete cosine transform with an efficient zonal processing approach. The experimental results have confirmed that both the proposed image compression scheme and NoC architecture can achieve a reasonable image quality with lower processing time.

An Empirical Model of Correlated Traffics in LTE-Advanced System through an Innovative Simulation Tool

Long Term Evolution Advanced (LTE-Advanced) LTE-Advanced is not new as a radio access technology, but it is an evolution of LTE to enhance the performance. This generation is the continuation of 3GPP-LTE (3GPP: 3rd Generation Partnership Project) and it is targeted for advanced development of the requirements of LTE in terms of throughput and coverage. The performance evaluation process of any network should be based on many models and simulations to investigate the network layers and functions and monitor the employment of the new technologies especially when this network includes large-bandwidth and low-latency links such as LTE and LTE-Advanced networks. Therefore, it’s necessary to enhance the proposed models of high-speed and high-congested link networks to make these links and traffics fulfill the needs of the huge data which transferred over the congested links. This article offered an innovative model of the most correlated links of LTE-Advanced system using the Network Simulator 2 (NS-2) with investigation of the link parameters.

Heat Transfer Characteristics and Fluid Flow past Staggered Flat-Tube Bank Using CFD

A computational fluid dynamic (CFD-Fluent 6.2) for two-dimensional fluid flow is applied to predict the pressure drop and heat transfer characteristics of laminar and turbulent flow past staggered flat-tube bank. Effect of aspect ratio ((H/D)/(L/D)) on pressure drop, temperature, and velocity contour for laminar and turbulent flow over staggered flat-tube bank is studied. The theoretical results of the present models are compared with previously published experimental data of different authors. Satisfactory agreement is demonstrated. Also, the comparison between the present study and others analytical methods for the Re number with Nu number is done. The results show as the Reynolds number increases the maximum velocity in the passage between the upper and lower tubes increases. The comparisons show a fair agreement especially in the turbulent flow region. The good agreement of the data of this work with these recommended analytical methods validates the current study.

Supplier Selection Criteria and Methods in Supply Chains: A Review

An effective supplier selection process is very important to the success of any manufacturing organization. The main objective of supplier selection process is to reduce purchase risk, maximize overall value to the purchaser, and develop closeness and long-term relationships between buyers and suppliers in today’s competitive industrial scenario. The literature on supplier selection criteria and methods is full of various analytical and heuristic approaches. Some researchers have developed hybrid models by combining more than one type of selection methods. It is felt that supplier selection criteria and method is still a critical issue for the manufacturing industries therefore in the present paper the literature has been thoroughly reviewed and critically analyzed to address the issue.

The Strategy of Creating a Virtual Interactive Platform for the Low-Carbon Open Innovations Relay

A strategy for the creation of a Virtual Interactive Platform (or Networking Platform) to combine the four web-baseness of expert systems on the transfer and diffusion of low-carbon technologies. It used the concept of “Open Innovation” and “Triple Helix” with regard to theories of “Green Growth” and “Carbon Footprint”. Interpreters expert systems operate on the basis of models of the “Predator-Prey” for the process of transfer and diffusion of technologies, taking into account the features caused by the need to mitigate the effects of climate change.

Novel NMR-Technology to Assess Food Quality and Safety

High Resolution NMR Spectroscopy offers unique screening capabilities for food quality and safety by combining non-targeted and targeted screening in one analysis. The objective is to demonstrate, that due to its extreme reproducibility NMR can detect smallest changes in concentrations of many components in a mixture, which is best monitored by statistical evaluation however also delivers reliable quantification results. The methodology typically uses a 400 MHz high resolution instrument under full automation after minimized sample preparation. For example one fruit juice analysis in a push button operation takes at maximum 15 minutes and delivers a multitude of results, which are automatically summarized in a PDF report. The method has been proven on fruit juices, where so far unknown frauds could be detected. In addition conventional targeted parameters are obtained in the same analysis. This technology has the advantage that NMR is completely quantitative and concentration calibration only has to be done once for all compounds. Since NMR is so reproducible, it is also transferable between different instruments (with same field strength) and laboratories. Based on strict SOP`s, statistical models developed once can be used on multiple instruments and strategies for compound identification and quantification are applicable as well across labs.

Estimation of Missing or Incomplete Data in Road Performance Measurement Systems

Modern management in most fields is performance based; both planning and implementation of maintenance and operational activities are driven by appropriately defined performance indicators. Continuous real-time data collection for management is becoming feasible due to technological advancements. Outdated and insufficient input data may result in incorrect decisions. When using deterministic models the uncertainty of the object state is not visible thus applying the deterministic models are more likely to give false diagnosis. Constructing structured probabilistic models of the performance indicators taking into consideration the surrounding indicator environment enables to estimate the trustworthiness of the indicator values. It also assists to fill gaps in data to improve the quality of the performance analysis and management decisions. In this paper authors discuss the application of probabilistic graphical models in the road performance measurement and propose a high-level conceptual model that enables analyzing and predicting more precisely future pavement deterioration based on road utilization.

Adsorption of Ferrous and Ferric Ions in Aqueous and Industrial Effluent onto Pongamia pinnata Tree Bark

One of the causes of water pollution is the presence of heavy metals in water. In the present study, an adsorbent prepared from the raw bark of the Pongamia pinnata tree is used for the removal of ferrous or ferric ions from aqueous and waste water containing heavy metals. Adsorption studies were conducted at different pH, concentration of metal ion, amount of adsorbent, contact time, agitation and temperature. The Langmuir and Freundlich adsorption isotherm models were applied for the results. The Langmuir isotherms were best fitted by the equilibrium data. The maximum adsorption was found to 146mg/g in waste water at a temperature of 30°C which is in agreement as comparable to the adsorption capacity of different adsorbents reported in literature. Pseudo second order model best fitted the adsorption of both ferrous and ferric ions.