Effects of Adding Different Levels of Anaerobic Fungi on Cellulase Activity of Ostrich Digestive Tract-s Microorganisms under in Vitro Condition

the objective of this study is to measure the levels of cellulas activity of ostrich GI microorganisms, and comparing it with the levels of cellulas activity of rumen-s microorganisms, and also to estimate the probability of increasing enzyme activity with injecting different dosages (30%, 50% and 70%) of pure anaerobic goat rumen fungi. The experiment was conducted in laboratory and under a complete anaerobic condition (in vitro condition). 40 ml of “CaldWell" medium and 1.4g wheat straw were placed in incubator for an hour. The cellulase activity of ostrich microorganisms was compared with other treatments, and then different dosages (30%, 50% and 70%) of pure anaerobic goat rumen fungi were injected to ostrich microorganism-s media. Due to the results, cattle and goat with 2.13 and 2.08 I.U (international units) respectively showed the highest activity and ostrich with 0.91 (I.U) had the lowest cellulose activity (p < 0.05). Injecting 30% and 50% of anaerobic fungi had no significant incensement in enzyme activity, but with injecting 70% of rumen fungi to ostrich microorganisms culture a significant increase was observed 1.48 I.U. (p < 0.05).

A Multiagent System for Distributed Systems Management

The demand for autonomous resource management for distributed systems has increased in recent years. Distributed systems require an efficient and powerful communication mechanism between applications running on different hosts and networks. The use of mobile agent technology to distribute and delegate management tasks promises to overcome the scalability and flexibility limitations of the currently used centralized management approach. This work proposes a multiagent system that adopts mobile agents as a technology for tasks distribution, results collection, and management of resources in large-scale distributed systems. A new mobile agent-based approach for collecting results from distributed system elements is presented. The technique of artificial intelligence based on intelligent agents giving the system a proactive behavior. The presented results are based on a design example of an application operating in a mobile environment.

Assamese Numeral Speech Recognition using Multiple Features and Cooperative LVQ -Architectures

A set of Artificial Neural Network (ANN) based methods for the design of an effective system of speech recognition of numerals of Assamese language captured under varied recording conditions and moods is presented here. The work is related to the formulation of several ANN models configured to use Linear Predictive Code (LPC), Principal Component Analysis (PCA) and other features to tackle mood and gender variations uttering numbers as part of an Automatic Speech Recognition (ASR) system in Assamese. The ANN models are designed using a combination of Self Organizing Map (SOM) and Multi Layer Perceptron (MLP) constituting a Learning Vector Quantization (LVQ) block trained in a cooperative environment to handle male and female speech samples of numerals of Assamese- a language spoken by a sizable population in the North-Eastern part of India. The work provides a comparative evaluation of several such combinations while subjected to handle speech samples with gender based differences captured by a microphone in four different conditions viz. noiseless, noise mixed, stressed and stress-free.

A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making

Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.

Decision Algorithm for Smart Airbag Deployment Safety Issues

Airbag deployment has been known to be responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decisions. Therefore, the authorities and industries have been looking for more innovative and intelligent products to be realized for future enhancements in the vehicle safety systems (VSSs). Although the VSSs technologies have advanced considerably, they still face challenges such as how to avoid unnecessary and untimely airbag deployments that can be hazardous and fatal. Currently, most of the existing airbag systems deploy without regard to occupant size and position. As such, this paper will focus on the occupant and crash sensing performances due to frontal collisions for the new breed of so called smart airbag systems. It intends to provide a thorough discussion relating to the occupancy detection, occupant size classification, occupant off-position detection to determine safe distance zone for airbag deployment, crash-severity analysis and airbag decision algorithms via a computer modeling. The proposed system model consists of three main modules namely, occupant sensing, crash severity analysis and decision fusion. The occupant sensing system module utilizes the weight sensor to determine occupancy, classify the occupant size, and determine occupant off-position condition to compute safe distance for airbag deployment. The crash severity analysis module is used to generate relevant information pertinent to airbag deployment decision. Outputs from these two modules are fused to the decision module for correct and efficient airbag deployment action. Computer modeling work is carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes.

How Learning Efficiency Affects Job Performance Effectiveness

The purpose of this research was to study the influence of learning efficiency on local accountants’ job performance effectiveness. This paper drew upon the survey data collected from 335 local accountants survey conducted at Nakhon Ratchasima province, Thailand. The statistics utilized in this paper included percentage, mean, standard deviation, and regression analysis. The findings revealed that the majority of samples were between 31-40 years old, married, held an undergraduate degree, and had an average income between 10,000-15,000 baht. The majority of respondents had less than five years of accounting experience and worked for local administrations. The overall learning efficiency score was in the highest level while the local accountants’ job performance effectiveness score was also in the high level. The hypothesis testing’s result disclosed that learning efficiency factors which were knowledge, Skill, and Attitude had an influence on local accountants’ job the performance effectiveness.

Study of Compost Maturity during Humification Process using UV-Spectroscopy

The increments of aromatic structures are widely used to monitor the degree of humification. Compost derived from mix manures mixed with agricultural wastes was studied. The compost collected at day 0, 7, 14, 21, 28, 35, 49, 77, 91, 105, and 119 was divided into 3 stages, initial stage at day 0, thermophilic stage during day 1-48, and mature stage during day 49-119. The change of highest absorptions at wavelength range between 210-235 nm during day 0- 49 implied that small molecules such as nitrates and carboxylic occurred faster than the aromatic molecules that were found at wavelength around 280 nm. The ratio of electron-transfer band at wavelength 253 nm by the benzonoid band at wavelength 230 nm (E253/E230) also gradually increased during the fermenting period indicating the presence of O-containing functional groups. This was in agreement with the shift change from aliphatic to aromatic structures as shown by the relationship with C/N and H/C ratios (r = - 0.631 and -0.717, p< 0.05) since both were decreasing. Although the amounts of humic acid (HA) were not different much during the humification process, the UV spectral deconvolution showed better qualitative characteristics to help in determining the compost quality. From this study, the compost should be used at day 49 and should not be kept longer than 3 months otherwise the quality of HA would decline regardless of the amounts of HA that might be rising. This implied that other processes, such as mineralization had an influence on the humification process changing HA-s structure and its qualities.

Efficient Real-time Remote Data Propagation Mechanism for a Component-Based Approach to Distributed Manufacturing

Manufacturing Industries face a crucial change as products and processes are required to, easily and efficiently, be reconfigurable and reusable. In order to stay competitive and flexible, situations also demand distribution of enterprises globally, which requires implementation of efficient communication strategies. A prototype system called the “Broadcaster" has been developed with an assumption that the control environment description has been engineered using the Component-based system paradigm. This prototype distributes information to a number of globally distributed partners via an adoption of the circular-based data processing mechanism. The work highlighted in this paper includes the implementation of this mechanism in the domain of the manufacturing industry. The proposed solution enables real-time remote propagation of machine information to a number of distributed supply chain client resources such as a HMI, VRML-based 3D views and remote client instances regardless of their distribution nature and/ or their mechanisms. This approach is presented together with a set of evaluation results. Authors- main concentration surrounds the reliability and the performance metric of the adopted approach. Performance evaluation is carried out in terms of the response times taken to process the data in this domain and compared with an alternative data processing implementation such as the linear queue mechanism. Based on the evaluation results obtained, authors justify the benefits achieved from this proposed implementation and highlight any further research work that is to be carried out.

Piecewise Interpolation Filter for Effective Processing of Large Signal Sets

Suppose KY and KX are large sets of observed and reference signals, respectively, each containing N signals. Is it possible to construct a filter F : KY → KX that requires a priori information only on few signals, p  N, from KX but performs better than the known filters based on a priori information on every reference signal from KX? It is shown that the positive answer is achievable under quite unrestrictive assumptions. The device behind the proposed method is based on a special extension of the piecewise linear interpolation technique to the case of random signal sets. The proposed technique provides a single filter to process any signal from the arbitrarily large signal set. The filter is determined in terms of pseudo-inverse matrices so that it always exists.

Constraint Active Contour Model with Application to Automated Three-Dimensional Airway Wall Segmentation

For evaluating the severity of Chronic Obstructive Pulmonary Disease (COPD), one is interested in inspecting the airway wall thickening due to inflammation. Although airway segmentations have being well developed to reconstruct in high order, airway wall segmentation remains a challenge task. While tackling such problem as a multi-surface segmentation, the interrelation within surfaces needs to be considered. We propose a new method for three-dimensional airway wall segmentation using spring structural active contour model. The method incorporates the gravitational field of the image and repelling force field of the inner lumen as the soft constraint and the geometric spring structure of active contour as the hard constraint to approximate a three-dimensional coupled surface readily for thickness measurements. The results show the preservation of topology constraints of coupled surfaces. In conclusion, our springy, soft-tissue-like structure ensures the globally optimal solution and waives the shortness following by the inevitable improper inner surface constraint.

Modelling Peer Group Dieting Behaviour

The aim of this paper is to understand how peers can influence adolescent girls- dieting behaviour and their body image. Departing from imitation and social learning theories, we study whether adolescent girls tend to model their peer group dieting behaviours, thus influencing their body image construction. Our study was conducted through an enquiry applied to a cluster sample of 466 adolescent high school girls in Lisbon city public schools. Our main findings point to an association between girls- and peers- dieting behaviours, thus reinforcing the modelling hypothesis.

Electrical Impedance Imaging Using Eddy Current

Electric impedance imaging is a method of reconstructing spatial distribution of electrical conductivity inside a subject. In this paper, a new method of electrical impedance imaging using eddy current is proposed. The eddy current distribution in the body depends on the conductivity distribution and the magnetic field pattern. By changing the position of magnetic core, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in image reconstruction of conductivity distribution. The least square error minimization method is used as a reconstruction algorithm. The back projection algorithm is used to get two dimensional images. Based on this principle, a measurement system is developed and some model experiments were performed with a saline filled phantom. The shape of each model in the reconstructed image is similar to the corresponding model, respectively. From the results of these experiments, it is confirmed that the proposed method is applicable in the realization of electrical imaging.

An Application of a Cost Minimization Model in Determining Safety Stock Level and Location

In recent decades, the lean methodology, and the development of its principles and concepts have widely been applied in supply chain management. One of the most important strategies of being lean is having efficient inventory within the chain. On the other hand, managing inventory efficiently requires appropriate management of safety stock in order to protect against increasing stretch in the breaking points of the supply chain, which in turn can result in possible reduction of inventory. This paper applies a safety stock cost minimization model in a manufacturing company. The model results in optimum levels and locations of safety stock within the company-s supply chain in order to minimize total logistics costs.

The Service Failure and Recovery in the Information Technology Services

It is important to retain customer satisfaction in information technology services. When a service failure occurs, companies need to take service recovery action to recover their customer satisfaction. Although companies cannot avoid all problems and complaints, they should try to make up. Therefore, service failure and service recovery have become an important and challenging issue for companies. In this paper, the literature and the problems in the information technology services were reviewed. An integrated model of profit driven for the service failure and service recovery was established in view of the benefit of customer and enterprise. Moreover, the interaction between service failure and service recovery strategy was studied, the result of which verified the matching principles of the service recovery strategy and the type of service failure. In addition, the relationship between the cost of service recovery and customer-s cumulative value of service after recovery was analyzed with the model. The result attributes to managers in deciding on appropriate resource allocations for recovery strategies.

Solar Thermal Aquaculture System Controller Based on Artificial Neural Network

Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.

Topographic Arrangement of 3D Design Components on 2D Maps by Unsupervised Feature Extraction

As a result of the daily workflow in the design development departments of companies, databases containing huge numbers of 3D geometric models are generated. According to the given problem engineers create CAD drawings based on their design ideas and evaluate the performance of the resulting design, e.g. by computational simulations. Usually, new geometries are built either by utilizing and modifying sets of existing components or by adding single newly designed parts to a more complex design. The present paper addresses the two facets of acquiring components from large design databases automatically and providing a reasonable overview of the parts to the engineer. A unified framework based on the topographic non-negative matrix factorization (TNMF) is proposed which solves both aspects simultaneously. First, on a given database meaningful components are extracted into a parts-based representation in an unsupervised manner. Second, the extracted components are organized and visualized on square-lattice 2D maps. It is shown on the example of turbine-like geometries that these maps efficiently provide a wellstructured overview on the database content and, at the same time, define a measure for spatial similarity allowing an easy access and reuse of components in the process of design development.

Fusion Filters Weighted by Scalars and Matrices for Linear Systems

An optimal mean-square fusion formulas with scalar and matrix weights are presented. The relationship between them is established. The fusion formulas are compared on the continuous-time filtering problem. The basic differential equation for cross-covariance of the local errors being the key quantity for distributed fusion is derived. It is shown that the fusion filters are effective for multi-sensor systems containing different types of sensors. An example demonstrating the reasonable good accuracy of the proposed filters is given.

Model of High-Speed Train Energy Consumption

In the hardening energy context, the transport sector which constitutes a large worldwide energy demand has to be improving for decrease energy demand and global warming impacts. In a controversial situation where subsists an increasing demand for long-distance and high-speed travels, high-speed trains offer many advantages, as consuming significantly less energy than road or air transports. At the project phase of new rail infrastructures, it is nowadays important to characterize accurately the energy that will be induced by its operation phase, in addition to other more classical criteria as construction costs and travel time. Current literature consumption models used to estimate railways operation phase are obsolete or not enough accurate for taking into account the newest train or railways technologies. In this paper, an updated model of consumption for high-speed is proposed, based on experimental data obtained from full-scale tests performed on a new high-speed line. The assessment of the model is achieved by identifying train parameters and measured power consumptions for more than one hundred train routes. Perspectives are then discussed to use this updated model for accurately assess the energy impact of future railway infrastructures.

Low Power Circuit Architecture of AES Crypto Module for Wireless Sensor Network

Recently, much research has been conducted for security for wireless sensor networks and ubiquitous computing. Security issues such as authentication and data integrity are major requirements to construct sensor network systems. Advanced Encryption Standard (AES) is considered as one of candidate algorithms for data encryption in wireless sensor networks. In this paper, we will present the hardware architecture to implement low power AES crypto module. Our low power AES crypto module has optimized architecture of data encryption unit and key schedule unit which could be applicable to wireless sensor networks. We also details low power design methods used to design our low power AES crypto module.