Numerical Analysis of Fractured Process in Locomotive Steel Wheels

Railway vehicle wheels are designed to operate in harsh environments and to withstand high hydrostatic contact pressures. This situation may result in critical circumstances, in particular wheel breakage. This paper presents a time history of a series of broken wheels during a time interval [2007-2008] belongs to locomotive fleet on Iranian Railways. Such fractures in locomotive wheels never reported before. Due to the importance of this issue, a research study has been launched to find the potential reasons of this problem. The authors introduce a FEM model to indicate how and where the wheels could have been affected during their operation. Then, the modeling results are presented and discussed in detail.

Development of Regression Equation for Surface Finish and Analysis of Surface Integrity in EDM

Electrical discharge machining (EDM) is a relatively modern machining process having distinct advantages over other machining processes and can machine Ti-alloys effectively. The present study emphasizes the features of the development of regression equation based on response surface methodology (RSM) for correlating the interactive and higher-order influences of machining parameters on surface finish of Titanium alloy Ti-6Al-4V. The process parameters selected in this study are discharge current, pulse on time, pulse off time and servo voltage. Machining has been accomplished using negative polarity of Graphite electrode. Analysis of variance is employed to ascertain the adequacy of the developed regression model. Experiments based on central composite of response surface method are carried out. Scanning electron microscopy (SEM) analysis was performed to investigate the surface topography of the EDMed job. The results evidence that the proposed regression equation can predict the surface roughness effectively. The lower ampere and short pulse on time yield better surface finish.

Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force

The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy’s linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark’s beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

Decolorization and COD Reduction Efficiency of Magnesium over Iron based Salt for the Treatment of Textile Wastewater Containing Diazo and Anthraquinone Dyes

Magnesium chloride, though cost wise roughly same as of ferrous sulphate, is less commonly used coagulant in comparison to the ferrous sulphate for the treatment of wastewater. The present study was conducted to investigate the comparative effectiveness of ferrous sulphate (FeSO4.7H2O) as iron based salt and magnesium chloride (MgCl2) as magnesium based salt in terms of decolorization and chemical oxygen demand (COD) reduction efficiency of textile wastewater. The coagulants were evaluated for synthetic textile wastewater containing two diazo dyes namely Reactive Black 5 (RB5) and Congo Red (CR) and one anthraquinone dye as Disperse Blue 3 (DB3), in seven possible equi-ratio combinations. Other chemical constituents that are normally released from different textile processing units were also added to replicate a practical scenario. From this study, MgCl2/Lime was found to be a superior coagulant system as compared to FeSO4.7H2O/Lime, FeSO4.7H2O/NaOH and MgCl2/NaOH.

Statistical Screening of Medium Components on Ethanol Production from Cashew Apple Juice using Saccharomyces diasticus

In the present study, effect of critical medium components (a total of fifteen components) on ethanol production from waste cashew apple juice (CAJ) using yeast Saccharomyces diasticus was studied. A statistical response surface methodology (RSM) based Plackett-Burman Design (PBD) was used for the design of experiments. The design contains a total of 32 experimental trails. The effect of medium components on ethanol was studied at two different levels such as low concentration level (-) and high concentration levels (+). The dependent variables selected in this study were ethanol concentration (g/L) and cellmass concentration (g/L). Data obtained from RSM on ethanol production were subjected to analysis of variance (ANOVA). In general, initial substrate concentration significantly influenced the microbial growth and product formation. Of the medium components evaluated, CAJ concentration, yeast extract, (NH4)2SO4, and malt extract showed significant effect on ethanol fermentation. A second-order polynomial model was used to predict the experimental data and the model fitted the data with a high correlation coefficient (R2 > 0.98). Maximum ethanol (15.3 g/L) and biomass (6.4 g/L) concentrations were obtained at the optimum medium composition and at optimum condition (temperature-30°C; initial pH-6.8) after 72 h fermentation using S.diasticus.

Synthesis and Simulation of Enhanced Buffer Router vs. Virtual Channel Router in NOC ON Cadence

This paper presents a synthesis and simulation of proposed enhanced buffer. The design provides advantages of both buffer and bufferless network for that two cross bar switches are used. The concept of virtual channel (VC) is eliminated from the previous design by using an efficient flow-control scheme that uses the storage already present in pipelined channels in place of explicit input VCBs. This can be addressed by providing enhanced buffers on the bufferless link and creating two virtual networks. With this approach, VCBs act as distributed FIFO buffers. Without VCBs or VCs, deadlock prevention is achieved by duplicating physical channels. An enhanced buffer provides a function of hand shaking by providing a ready valid handshake signal and two bit storage. Through this design the power is reduced to 15.65% and delay is reduced to 97.88% with respect to virtual channel router.

Effect of Pond Ash and RBI Grade 81 on Properties of Subgrade Soil and Base Course of Flexible Pavement

This paper deals with use of pond ash and RBI Grade 81 for improvement in CBR values of clayey soil and grade-III materials used for base course of flexible pavement. The pond ash is a thermal power plant waste and RBI Grade 81 is chemical soil stabilizer. The geotechnical properties like Maximum Dry Density (MDD), Optimum Moisture Content (OMC), Unconfined Compressive Strength (UCS), CBR value and Differential Free Swell (DFS) index of soil are tested in the laboratory for different mixes of soil, pond ash and RBI Grade 81 for different proportions. The mixes of grade-III material, pond ash and RBI Grade 81 tested for CBR test. From the study it is found that the geotechnical properties of clayey soil are improved significantly, if pond ash added with RBI Grade 81. The optimum mix recommended for subgrade is soil: pond ash: RBI Grade 81 in proportions of 76:20:4. The CBR value of grade-III base course treated with 20% pond ash and 4% RBI Grade 81 is increased by 125.93% as compared to untreated grade-III base course.

Computer Aided Language Learning System for Arabic for Second Language Learners

This paper aims to build an Arabic learning language tool using Flash CS4 professional software with action script 3.0 programming language, based on the Computer Aided Language Learning (CALL) material. An extra intention is to provide a primary tool and focus on learning Arabic as a second language to adults. It contains letters, words and sentences at the first stage. This includes interactive practices, which evaluates learners’ comprehension of the Arabic language. The system was examined and it was found that the language structure was correct and learners were satisfied regarding the system tools. The learners found the system tools efficient and simple to use. The paper's main conclusion illustrates that CALL can be applied without any hesitation to second language learners

Isolation and Screening of Fungi for Aerobic Delignification and Reduction of AOX of Pulp and Paper Mill Effluent

Water pollution is a major concern for the pulp and paper industry due to the large quantities of effluents generated. Biodegradation of industrial Lignin and AOX by a fungal isolate identified as Aspergillus flavus, white rot fungi which was isolated from Pulp and Paper effluent was studied in batch flask system with industrial effluent and synthetic solution. The flasks were operated at temperature 32°C at 200rpm for eight days in continuous mode. The average overall pH, Temperature, DO, C.O.D, T.D.S, T.S.S, Lignin, AOX were up to 4.56, 32oC, 4.2mg/l, 104mg/l, 6000 mg/l, 4000mg/l, 575.5mg/l, 2195 mg/l respectively after treatment. The Aspergillus flavus sp was the most effective in the biodegradation of Lignin of pulp industry for 94% at 480nm, AOX for 62% at 510nm and of chemical oxygen demand levels for 45% after 8 days of incubation. The optimal conditions found were 4 pH and 32oC temperature for lignin and AOX degradation.

Critical Success Factors of Information Technology Projects

Information Technology (IT) is being used by almost all organizations throughout the world. However its success at supporting and improving business is debatable. There is always the risk of IT project failure and studies have proven that a large number of IT projects indeed do fail. There are many components that further the success of IT projects; these have been studied in previous studies. Studies have found the most necessary components for success in software development projects, executive information systems etc. In this study previous literatures that have looked into these success promoting factors have been critically reviewed and analyzed. 15 Critical Success Factors (CSF) of IT projects were enlisted and examined. These factors can be applied to all IT projects and is not specific to a particular type of IT/IS project. A hypothesis was also generated after the evaluation of the factors.

Worth of Sick Building Syndrome and Enhance the Quality of Life in Green Building

A proper house is a suitable residential area which provides comfort, proper accessibility, security, stability and permanence of structure, enough lighting, proper initial infrastructures and ventilation for its inhabitants and the most important of all, it should be proportional to the family’s financial power . Saving energy and making optimal usage of it and also taking advantage of stable energies are the bases of green buildings. Making green building will help the health of a person living in it and in its surrounding. It will support the people and provoke their satisfaction. Not only it will bring about the raise of level of the quality of life for building inhabitants, but it will cause the promotion of quality level of life of the people living in the surrounding area and in general the society.   

New Drug Delivery System for Cancer Therapy

The paper presents a new drugs delivery system, based on the thin film technology. As a model antitumor drug, highly toxic doxorubicin is chosen. The system is based on the technology of obtaining zinc oxide composite of doxorubicin by deposition of nanosize ZnO films on the surface of doxorubicin coating on glass substrate using DC magnetron sputtering of zinc targets in Ar:O2 medium at room temperature. For doxorubicin zinc oxide compositions in the form of coatings and gels with 180-200nm thick ZnO films, higher (by a factor 2) in vivo (ascitic Ehrlich's carcinoma) antitumor activity is observed at low doses of doxorubicin in comparison with that of the initial preparation at therapeutic doses. The vector character of the doxorubicin zinc oxide composite transport to tumor tissues ensures the increase in antitumor activity as well as decrease of toxicity in comparison with the initial drug.

Evaluation of the FWD Moduli of a Flexible Pavement Using Finite Element Model

This study evaluates the back calculation of stiffness of a pavement section on Interstate 40 (I-40)in New Mexico through numerical analysis. Falling Weight Deflectometer (FWD) test has been conducted on a section on I-40. Layer stiffness of the pavement has been backcalculated by a backcalculation software, ELMOD, using the FWD test data. Commercial finite element software, ABAQUS, has been used to develop the Finite Element Model (FEM) of this pavement section. Geometry and layer thickness are collected from field coring. Input parameters i.e. stiffnesses of different layers of the pavement are used as the backcalculated ones. Resulting surface deflections at different radial distances from the FEM analysis are compared with field FWD deflection values. It shows close agreement between the FEM and FWD outputs. Therefore, the FWD test method can be considered to be a reliable test procedure for evaluating the in situ stiffness of pavement material.

Ultrasonic Assessment of Corpora Lutea and Plasma Progesterone Levels in Early Pregnant and Non Pregnant Cows

Corpus luteum cross sectional (by ultrasonography) and plasma progesterone (by DELFIA) were estimated in early pregnant and non pregnant cows on days 14th and 20th to 23rd post insemination. On day 14th, corpus luteum sectional area was 348.43 mm2 in pregnant and 387.84mm2 in non pregnant cows. Within days 20th to 23rd, corpus luteum sectional area ranged between 342.06 and 367.90 mm2 in pregnant and between 193.85 and 270.69 mm2 in non pregnant cows. Plasma progesterone level was 2.43 ng/ml in pregnant and 2.46 ng/ml in non pregnant cows on day 14th, while during days 20th to 23rd the level ranged between 2.47 and 2.84 ng/ml in pregnant and between 0.53 and 1.17 ng/ml in non pregnant cows. Results of both luteal tissue areas as well as plasma progesterone levels were highly significantly deferent (P

Durability of Concrete with Different Mineral Admixtures: A Review

Several review papers exist in literature related to the concrete containing mineral admixtures; however this paper reviews the durability characteristics of the concrete containing fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK) and rice husk ash (RHA). Durability related properties reviewed include permeability, resistance to sulfate attack, alkali-silica reaction (ASR), carbonation, chloride ion penetration, freezing and thawing, abrasion, fire, acid and efflorescence. From review of existing literature, it is found that permeability of concrete depends upon the content of alumina in mineral admixtures, i.e. higher the alumina content, lesser the permeability which results higher resistance to sulfate and chloride ion penetration. Highly reactive mineral admixtures prevent more ASR and reduce efflorescence. The carbonation increases with the mineral admixtures because higher water binder ratio and lesser content of portlandite in concrete due to pozzolanic reaction. Mineral admixtures require air entrainment except MK and RHA for better resistance to freezing and thawing.

Into Insights of Contextual Governance Framework for Religious Non-Profit Organizations

Governance in business firms is a topic that has long been studied in the literature. Traditionally, governance in business firms has focused on the roles of boards of directors in representing and protecting the interests of shareholders. Governance has also been studied in the context of non-profit organizations because good governance is essential to increase the likelihood that they will comply with the regulatory requirements that best serve their multiple stakeholders. This paper provides insights on the need of governance framework for religious non-profit organizations (RNPOs) based on five underlying principles. This paper is important to help regulators to understand RNPOs’ governance framework. The regulators may use the framework suggested for the development of the RNPOs’ code of governance in the future.

Efficient Microspore Isolation Methods for High Yield Embryoids and Regeneration in Rice (Oryza sativa L.)

Through anther and microspore culture methods, complete homozygous plants can be produced within a year as compared to the long inbreeding method. Isolated microspore culture is one of the most important techniques for rapid development of haploid plants. The efficiency of this method is influenced by several factors such as cultural conditions, growth regulators, plant media, pretreatments, physical and growth conditions of the donor plants, pollen isolation procedure, etc. The main purpose of this study was to improve the isolated microspore culture protocol in order to increase the efficiency of embryoids, its regeneration and reducing albinisms. Under this study we have tested mainly three different microspore isolation procedures by glass rod, homozeniger and by blending and found the efficiency on gametic embryogenesis. There are three types of media viz. washing, pre-culture and induction was used. The induction medium as AMC (modified MS) supplemented by 2, 4-D (2.5 mg/l), kinetin (0.5 mg/l) and higher amount of D-Manitol (90 g/l) instead of sucrose and two types of amino acids (L-glutamine and L-serine) were used. Out of three main microspore isolation procedure by homogenizer isolation (P4) showed best performance on ELS induction (177%) and green plantlets (104%) compared with other techniques. For all cases albinisims occurred but microspore isolation from excised anthers by glass rod and homogenizer showed lesser numbers of albino plants that was also one of the important findings in this study.

Investigation on the Behavior of Conventional Reinforced Coupling Beams

Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.

Speed Characteristics of Mixed Traffic Flow on Urban Arterials

Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.

Efficiency of Membrane Distillation to Produce Fresh Water

Seawater desalination has been accepted as one of the most effective solutions to the growing problem of a diminishing clean drinking water supply. Currently two desalination technologies dominate the market – the thermally driven multi-stage flash distillation (MSF) and the membrane based reverse osmosis (RO). However, in recent years membrane distillation (MD) has emerged as a potential alternative to the established means of desalination. This research project intended to determine the viability of MD as an alternative process to MSF and RO for seawater desalination. Specifically the project involves conducting thermodynamic analysis of the process based on the second law of thermodynamics to determine the efficiency of the MD. Data was obtained from experiments carried out on a laboratory rig. To determine exergy values required for the exergy analysis, two separate models were built in Engineering Equation Solver – the ’Minimum Separation Work Model’ and the ‘Stream Exergy Model’. The efficiency of MD process was found to be 17.3 % and the energy consumption was determined to be 4.5 kWh to produce one cubic meter of fresh water. The results indicate MD has potential as a technique for seawater desalination compared to RO and MSF. However it was shown that this was only the case if an alternate energy source such as green or waste energy was available to provide the thermal energy input to the process. If the process was required to power itself, it was shown to be highly inefficient and in no way thermodynamically viable as a commercial desalination process.