CAD/CAM Algorithms for 3D Woven Multilayer Textile Structures

This paper proposes new algorithms for the computeraided design and manufacture (CAD/CAM) of 3D woven multi-layer textile structures. Existing commercial CAD/CAM systems are often restricted to the design and manufacture of 2D weaves. Those CAD/CAM systems that do support the design and manufacture of 3D multi-layer weaves are often limited to manual editing of design paper grids on the computer display and weave retrieval from stored archives. This complex design activity is time-consuming, tedious and error-prone and requires considerable experience and skill of a technical weaver. Recent research reported in the literature has addressed some of the shortcomings of commercial 3D multi-layer weave CAD/CAM systems. However, earlier research results have shown the need for further work on weave specification, weave generation, yarn path editing and layer binding. Analysis of 3D multi-layer weaves in this research has led to the design and development of efficient and robust algorithms for the CAD/CAM of 3D woven multi-layer textile structures. The resulting algorithmically generated weave designs can be used as a basis for lifting plans that can be loaded onto looms equipped with electronic shedding mechanisms for the CAM of 3D woven multi-layer textile structures.

Design, Implementation and Testing of Mobile Agent Protection Mechanism for MANETS

In the current research, we present an operation framework and protection mechanism to facilitate secure environment to protect mobile agents against tampering. The system depends on the presence of an authentication authority. The advantage of the proposed system is that security measures is an integral part of the design, thus common security retrofitting problems do not arise. This is due to the presence of AlGamal encryption mechanism to protect its confidential content and any collected data by the agent from the visited host . So that eavesdropping on information from the agent is no longer possible to reveal any confidential information. Also the inherent security constraints within the framework allow the system to operate as an intrusion detection system for any mobile agent environment. The mechanism is tested for most of the well known severe attacks against agents and networked systems. The scheme proved a promising performance that makes it very much recommended for the types of transactions that needs highly secure environments, e. g., business to business.

Free Convection in a MHD Porous Cavity with using Lattice Boltzmann Method

We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.

FleGSens – Secure Area Monitoring Using Wireless Sensor Networks

In the project FleGSens, a wireless sensor network (WSN) for the surveillance of critical areas and properties is currently developed which incorporates mechanisms to ensure information security. The intended prototype consists of 200 sensor nodes for monitoring a 500m long land strip. The system is focused on ensuring integrity and authenticity of generated alarms and availability in the presence of an attacker who may even compromise a limited number of sensor nodes. In this paper, two of the main protocols developed in the project are presented, a tracking protocol to provide secure detection of trespasses within the monitored area and a protocol for secure detection of node failures. Simulation results of networks containing 200 and 2000 nodes as well as the results of the first prototype comprising a network of 16 nodes are presented. The focus of the simulations and prototype are functional testing of the protocols and particularly demonstrating the impact and cost of several attacks.

Proposition for a New Approach of Version Control System Based On ECA Active Rules

We try to give a solution of version control for documents in web service, that-s why we propose a new approach used specially for the XML documents. The new approach is applied in a centralized repository, this repository coexist with other repositories in a decentralized system. To achieve the activities of this approach in a standard model we use the ECA active rules. We also show how the Event-Condition-Action rules (ECA rules) have been incorporated as a mechanism for the version control of documents. The need to integrate ECA rules is that it provides a clear declarative semantics and induces an immediate operational realization in the system without the need for human intervention.

Simultaneous Treatment and Catalytic Gasification of Olive Mill Wastewater under Supercritical Conditions

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which has a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1 MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water is investigated with the use of Pt/Al2O3 and Ni/Al2O3 catalysts. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. All of the catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C), under a constant pressure of 25 MPa. For the experiments conducted with Ni/Al2O3 catalyst, the effect of five reaction times (30, 60, 90, 120 and 150 s) was investigated. However, procuring that similar gasification efficiencies could be obtained at shorter times, the experiments were made by using different reaction times (10, 15, 20, 25 and 30 s) for the case of Pt/Al2O3 catalyst. Through these experiments, the effects of temperature, time and catalyst type on the gasification yields and treatment efficiencies were investigated.

Genetic Algorithm Based Approach for Actuator Saturation Effect on Nonlinear Controllers

In the real application of active control systems to mitigate the response of structures subjected to sever external excitations such as earthquake and wind induced vibrations, since the capacity of actuators is limited then the actuators saturate. Hence, in designing controllers for linear and nonlinear structures under sever earthquakes, the actuator saturation should be considered as a constraint. In this paper optimal design of active controllers for nonlinear structures by considering the actuator saturation has been studied. To this end a method has been proposed based on defining an optimization problem which considers the minimizing of the maximum displacement of the structure as objective when a limited capacity for actuator has been used as a constraint in optimization problem. To evaluate the effectiveness of the proposed method, a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of pre-stressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used as active control mechanism and algorithm. To enhance the efficiency of the controllers, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been found by using the Distributed Genetic Algorithm (DGA). According to the results it has been concluded that the proposed method has been effective in considering the actuator saturation in designing optimal controllers for nonlinear frames. Also it has been shown that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers for considering the actuator saturation.

Multimode Dynamics of the Beijing Road Traffic System

The Beijing road traffic system, as a typical huge urban traffic system, provides a platform for analyzing the complex characteristics and the evolving mechanisms of urban traffic systems. Based on dynamic network theory, we construct the dynamic model of the Beijing road traffic system in which the dynamical properties are described completely. Furthermore, we come into the conclusion that urban traffic systems can be viewed as static networks, stochastic networks and complex networks at different system phases by analyzing the structural randomness. As well as, we demonstrate the evolving process of the Beijing road traffic network based on real traffic data, validate the stochastic characteristics and the scale-free property of the network at different phases

A Competitiveness Analysis of the Convention Tourism of China's Macao Special Administrative Region

This paper explored the use of Importance- Performance Analysis in assessing the competitiveness of China-s Macao Special Administrative Region as a city for international conventions. Determinants of destination choice for convention tourists are grouped under three factors, namely the convention factor, the city factor and the tourism factor. Attributes of these three factors were studied through a survey with the convention participants and exhibitors of Macao SAR. Results indicate that the city boasts of strong traditional tourist attractions and infrastructure, but is deficient in specialized convention experts and promotion mechanisms. A reflection on the findings suggests that an urban city such as the Macao SAR can co-develop its the convention and the traditional tourism for a synergistic effect. With proper planning and co-ordination, both areas of the city-s tourism industry will grow as they feed off each other.

Left Ventricular Model to Study the Combined Viscoelastic, Heart Rate, and Size Effects

It is known that the heart interacts with and adapts to its venous and arterial loading conditions. Various experimental studies and modeling approaches have been developed to investigate the underlying mechanisms. This paper presents a model of the left ventricle derived based on nonlinear stress-length myocardial characteristics integrated over truncated ellipsoidal geometry, and second-order dynamic mechanism for the excitation-contraction coupling system. The results of the model presented here describe the effects of the viscoelastic damping element of the electromechanical coupling system on the hemodynamic response. Different heart rates are considered to study the pacing effects on the performance of the left-ventricle against constant preload and afterload conditions under various damping conditions. The results indicate that the pacing process of the left ventricle has to take into account, among other things, the viscoelastic damping conditions of the myofilament excitation-contraction process. The effects of left ventricular dimensions on the hemdynamic response have been examined. These effects are found to be different at different viscoelastic and pacing conditions.

Design and Evaluation of a Pneumatic Muscle Actuated Gripper

Deployment of pneumatic muscles in various industrial applications is still in its early days, considering the relative newness of these components. The field of robotics holds particular future potential for pneumatic muscles, especially in view of their specific behaviour known as compliance. The paper presents and discusses an innovative constructive solution for a gripper system mountable on an industrial robot, based on actuation by a linear pneumatic muscle and transmission of motion by gear and rack mechanism. The structural, operational and constructive models of the new gripper are presented, along with some of the experimental results obtained subsequently to the testing of a prototype. Further presented are two control variants of the gripper system, one by means of a 3/2-way fast-switching solenoid valve, the other by means of a proportional pressure regulator. Advantages and disadvantages are discussed for both variants.

DAMQ-Based Approach for Efficiently Using the Buffer Spaces of a NoC Router

In this paper we present high performance dynamically allocated multi-queue (DAMQ) buffer schemes for fault tolerance systems on chip applications that require an interconnection network. Two virtual channels shared the same buffer space. Fault tolerant mechanisms for interconnection networks are becoming a critical design issue for large massively parallel computers. It is also important to high performance SoCs as the system complexity keeps increasing rapidly. On the message switching layer, we make improvement to boost system performance when there are faults involved in the components communication. The proposed scheme is when a node or a physical channel is deemed as faulty, the previous hop node will terminate the buffer occupancy of messages destined to the failed link. The buffer usage decisions are made at switching layer without interactions with higher abstract layer, thus buffer space will be released to messages destined to other healthy nodes quickly. Therefore, the buffer space will be efficiently used in case fault occurs at some nodes.

MiRNAs as Regulators of Tumour Suppressor Expression

Tumour suppressors are key participants in the prevention of cancer. Regulation of their expression through miRNAs is important for comprehensive translation inhibition of tumour suppressors and elucidation of carcinogenesis mechanisms. We studies the possibility of 1521 miRNAs to bind with 873 mRNAs of human tumour suppressors using RNAHybrid 2.1 and ERNAhybrid programmes. Only 978 miRNAs were found to be translational regulators of 812 mRNAs, and 61 mRNAs did not have any miRNA binding sites. Additionally, 45.9% of all miRNA binding sites were located in coding sequences (CDSs), 33.8% were located in 3' untranslated region (UTR), and 20.3% were located in the 5'UTR. MiRNAs binding with more than 50 target mRNAs and mRNAs binding with several miRNAs were selected. Hsa-miR-5096 had 15 perfectly complementary binding sites with mRNAs of 14 tumour suppressors. These newly indentified miRNA binding sites can be used in the development of medicines (anti-sense therapies) for cancer treatment.

Bond Strength in Thermally Sprayed Gas Turbine Shafts

In this paper, the bond strength of thermal spray coatings in high speed shafts has been studied. The metallurgical and mechanical studies has been made on the coated samples and shaft using optical microscopy, scanning electron microscopy (SEM).

Study on the Variation Effects of Diverging Angleon Characteristics of Flow in Converging and Diverging Ducts by Numerical Method

The present paper develops and validates a numerical procedure for the calculation of turbulent combustive flow in converging and diverging ducts and throuh simulation of the heat transfer processes, the amount of production and spread of Nox pollutant has been measured. A marching integration solution procedure employing the TDMA is used to solve the discretized equations. The turbulence model is the Prandtl Mixing Length method. Modeling the combustion process is done by the use of Arrhenius and Eddy Dissipation method. Thermal mechanism has been utilized for modeling the process of forming the nitrogen oxides. Finite difference method and Genmix numerical code are used for numerical solution of equations. Our results indicate the important influence of the limiting diverging angle of diffuser on the coefficient of recovering of pressure. Moreover, due to the intense dependence of Nox pollutant to the maximum temperature in the domain with this feature, the Nox pollutant amount is also in maximum level.

Gender Perspective Considerations in Disasters like Earthquakes and Floods of Pakistan

From past many decades human beings are suffering from plethora of natural disasters. Occurrence of disasters is a frequent process; it changes conceptual myths as more and more advancement are made. Although we are living in technological era but in developing countries like Pakistan disasters are shaped by socially constructed roles. The need is to understand the most vulnerable group of society i.e. females; their issues are complex in nature because of undermined gender status in the society. There is a need to identify maximum issues regarding females and to enhance the achievement of millennium development goals (MDGs). Gender issues are of great concern all around the globe including Pakistan. Here female visibility in society is low, and also during disasters, the failure to understand the reality that concentrates on double burden including productive and reproductive care. Women have to contribute a lot in society so we need to make them more disaster resilient. For this non-structural measures like awareness, trainings and education must be carried out. In rural and in urban settings in any disaster like earthquake or flood, elements like gender perspective, their age, physical health, demographic issues contribute towards vulnerability. In Pakistan the gender issues in disasters were of less concern before 2005 earthquake and 2010 floods. Significant achievements are made after 2010 floods when gender and child cell was created to provide all facilities to women and girls. The aim of the study is to highlight all necessary facilities in a disaster to build coping mechanism in females from basic rights till advance level including education.

Natural Convection in a Porous Medium Cavity with an Applied Vertical Magnetic Field using Lattice Boltzmann Method

We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.

Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet

A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating.

Development a New Model of EEVC/WG17 Lower Legform for Pedestrian Safety

Development, calibration and validation of a threedimensional model of the Legform impactor for pedestrian crash with bumper are presented. Lower limb injury is becoming an increasingly important concern in vehicle safety for both occupants and pedestrians. In order to prevent lower extremity injuries to a pedestrian when struck by a car, it is important to elucidate the loadings from car front structures on the lower extremities and the injury mechanism caused by these loadings. An impact test procedure with a legform addressing lower limb injuries in car pedestrian accidents has been proposed by EEVC/WG17. In this study a modified legform impactor is introduced and validated against EEVC/WG17 criteria. The finite element model of this legform is developed using LS-DYNA software. Total mass of legform impactor is 13.4 kg.Technical specifications including the mass and location of the center of gravity and moment of inertia about a horizontal axis through the respective centre of gravity in femur and tibia are determined. The obtained results of legform impactor static and dynamic tests are as specified in the EEVC/WG17.

Cement Mortar Lining as a Potential Source of Water Contamination

Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.