Impact of Landuse Change on Surface Temperature in Ibadan, Nigeria

It has become an increasing evident that large development influences the climate. There are concerns that rising temperature over developed areas could have negative impact and increase living discomfort within city boundaries. Temperature trends in Ibadan city have received little attention, yet the area has experienced heavy urban expansion between 1972 and 2014. This research aims at examining the impact of landuse change on surface temperature knowing that the built-up environment absorb and store solar energy, resulting into the Urban Heat Island (UHI) effect. The Landsat imagery was used to examine the landuse change for a period of 42 years (1972-2014). Land Surface Temperature (LST) was obtained by converting the thermal band to a surface temperature map and zonal statistic analyses was used to examine the relationship between landuse and temperature emission. The results showed that the settlement area increased to a large extent while the area covered by vegetation reduced during the study period. The spatial and temporal trends of surface temperature are related to the gradual change in urban landuse/landcover and the settlement area has the highest emission. This research provides useful insight into the temporal behavior of the Ibadan city.

Development of Star Tracker for Satellite

Much attention is paid to the development of space branch in Kazakhstan at present. Two Earth remote sensing satellites of Kazakhstan have been launched successfully. Many projects related to the development of components for satellite are carried in Kazakhstan, in particular the project related to the development of star tracker experimental model. It is planned to use the results of this project for development of star tracker prototype in the future. This article describes the main stages of development of star tracker experimental model.

Online Monitoring Rheological Property of Polymer Melt during Injection Molding

The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process.

True Detective as a Southern Gothic: A Study of Its Music-Lyrics

Nic Pizzolatto’s True Detective offers profound mythological and philosophical ramblings for audiences with literary sensibilities. An American Sothern Gothic with its Bayon landscape of the Gulf Coast of Louisiana, where two detectives Rustin Cohle and Martin Hart begin investigating the isolated murder of Dora Lange, only to discover an entrenched network of perversion and corruption, offers an existential outlook. The proposed research paper shall attempt to investigate the pervasive themes of gothic and existentialism in the music of the first season of the series.

Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

A quartz crystal microbalance (QCM) nanosensor was developed to detect lysozyme enzyme by functionalizing its gold surface with the attachment of poly(methacroyl-L-phenylalanine) (PMAPA) nanoparticles. PMAPA was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Hydrophobic QCM nanosensor was tested for real time detection of lysozyme enzyme from aqueous solution. The kinetic and affinity studies were determined by using lysozyme solutions with different concentrations. The responses related with mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.   

Robust Fault Diagnosis for Wind Turbine Systems Subjected to Multi-Faults

Operations, maintenance and reliability of wind turbines have received much attention over the years due to the rapid expansion of wind farms. This paper explores early fault diagnosis technique for a 5MW wind turbine system subjected to multiple faults, where genetic optimization algorithm is employed to make the residual sensitive to the faults, but robust against disturbances. The proposed technique has a potential to reduce the downtime mostly caused by the breakdown of components and exploit the productivity consistency by providing timely fault alarms. Simulation results show the effectiveness of the robust fault detection methods used under Matlab/Simulink/Gatool environment.

Modified Poly(pyrrole) Film Based Biosensors for Phenol Detection

In order to detect and quantify the phenolic contents of a wastewater with biosensors, two working electrodes based on modified Poly(Pyrrole) films were fabricated. Enzyme horseradish peroxidase was used as biomolecule of the prepared electrodes. Various phenolics were tested at the biosensor. Phenol detection was realized by electrochemical reduction of quinones produced by enzymatic activity. Analytical parameters were calculated and the results were compared with each other.

Mapping of Siltations of AlKhod Dam, Muscat, Sultanate of Oman Using Low-Cost Multispectral Satellite Data

Remote sensing plays a vital role in mapping of resources and monitoring of environments of the earth. In the present research study, mapping and monitoring of clay siltations occurred in the Alkhod Dam of Muscat, Sultanate of Oman are carried out using low-cost multispectral Landsat and ASTER data. The dam is constructed across the Wadi Samail catchment for ground water recharge. The occurrence and spatial distribution of siltations in the dam are studied with five years of interval from the year 1987 of construction to 2014. The deposits are mainly due to the clay, sand and silt occurrences derived from the weathering rocks of ophiolite sequences occurred in the Wadi Samail catchment. The occurrences of clays are confirmed by minerals identification using ASTER VNIR-SWIR spectral bands and Spectral Angle Mapper supervised image processing method. The presence of clays and their spatial distribution are verified in the field. The study recommends the technique and the low-cost satellite data to similar region of the world.

Stabilization Technique for Multi-Inputs Voltage Sense Amplifiers in Node Sharing Converters

This paper discusses the undesirable charge transfer through the parasitic capacitances of the input transistors in a multi-inputs voltage sense amplifier. Its intrinsic rail-to-rail voltage transitions at the output nodes inevitably disturb the input sides through the capacitive coupling between the outputs and inputs. Then, it can possible degrade the stabilities of the reference voltage levels. Moreover, it becomes more serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the overall systems. In order to alleviate the internal node voltage transition, the internal node stabilization techniques are proposed. It achieves 45% and 40% improvements for node stabilization and input referred disturbance, respectively.

An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes

This paper describes the tradeoffs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The backend consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.

Determination of Cyclic Citrullinated Peptide Antibodies on Quartz Crystal Microbalance Based Nanosensors

In this study, we have focused our attention on combining of molecular imprinting into nanofilms and QCM nanosensor approaches and producing QCM nanosensor for anti- CCP, chosen as model protein, using anti-CCP imprinted nanofilms. The nonimprinted nanosensor was also prepared to evaluate the selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM nanosensor was tested for real time detection of anti-CCP from aqueous solution. The kinetic and affinity studies were determined by using anti-CCP solutions with different concentrations. The responses related with mass shifts (%m) and frequency shifts (%f) were used to evaluate adsorption properties. To show the selectivity of the anti-CCP imprinted QCM nanosensor, competitive adsorption of anti-CCP and IgM was investigated. The results indicate that anti- CCP imprinted QCM nanosensor has higher adsorption capabilities for anti-CCP than for IgM, due to selective cavities in the polymer structure.

A Fuzzy Swarm Optimized Approach for Piece Selection in Bit Torrent Like Peer to Peer Network

Every machine plays roles of client and server simultaneously in a peer-to-peer (P2P) network. Though a P2P network has many advantages over traditional client-server models regarding efficiency and fault-tolerance, it also faces additional security threats. Users/IT administrators should be aware of risks from malicious code propagation, downloaded content legality, and P2P software’s vulnerabilities. Security and preventative measures are a must to protect networks from potential sensitive information leakage and security breaches. Bit Torrent is a popular and scalable P2P file distribution mechanism which successfully distributes large files quickly and efficiently without problems for origin server. Bit Torrent achieved excellent upload utilization according to measurement studies, but it also raised many questions as regards utilization in settings, than those measuring, fairness, and Bit Torrent’s mechanisms choice. This work proposed a block selection technique using Fuzzy ACO with optimal rules selected using ACO.

Numerical Calculation of Heat Transfer in Water Heater

This article is trying to determine the status of flue gas that is entering the KWH heat exchanger from combustion chamber in order to calculate the heat transfer ratio of the heat exchanger. Combination of measurement, calculation and computer simulation was used to create a useful way to approximate the heat transfer rate. The measurements were taken by a number of sensors that are mounted on the experimental device and by a thermal imaging camera. The results of the numerical calculation are in a good correspondence with the real power output of the experimental device. That result shows that the research has a good direction and can be used to propose changes in the construction of the heat exchanger, but still needs enhancements.

A Trends Analysis of Dinghy Yacht Simulator

This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. The results are summarized as follows. Attached to the cockpit are sensors that feed -back information on rudder angle, boat heel angle and mainsheet tension to the computer. Energy expenditure of the sailor measure indirectly using expired gas analysis for the measurement of VO2 and VCO2. At sea course configurations and wind conditions can be preset to suit any level of sailor from complete beginner to advanced sailor.

In vitro Cytotoxic and Genotoxic Effects of Arsenic Trioxide on Human Keratinocytes

Although, arsenic trioxide has been the subject of toxicological research, in vitro cytotoxicity and genotoxicity studies using relevant cell models and uniform methodology are not well elucidated. Hence, the aim of the present study was to evaluate the cytotoxicity and genotoxicity induced by arsenic trioxide in human keratinocytes (HaCaT) using the MTT [3-(4, 5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide] and alkaline single cell gel electrophoresis (Comet) assays, respectively. Human keratinocytes were treated with different doses of arsenic trioxide for 4 h prior to cytogenetic assessment. Data obtained from the MTT assay indicated that arsenic trioxide significantly reduced the viability of HaCaT cells in a dose-dependent manner, showing an IC50 value of 34.18 ± 0.6 μM. Data generated from the comet assay also indicated a significant dose-dependent increase in DNA damage in HaCaT cells associated with arsenic trioxide exposure. We observed a significant increase in comet tail length and tail moment, showing an evidence of arsenic trioxide -induced genotoxic damage in HaCaT cells. This study confirms that the comet assay is a sensitive and effective method to detect DNA damage caused by arsenic.

RFID Logistic Management with Cold Chain Monitoring – Cold Store Case Study

Logistics processes of perishable food in the supply chain include the distribution activities and the real time temperature monitoring to fulfil the cold chain requirements. The paper presents the use of RFID (Radio Frequency Identification) technology as an identification tool of receiving and shipping activities in the cold store. At the same time, the use of RFID data loggers with temperature sensors is presented to observe and store the temperatures for the purpose of analyzing the processes and having the history data available for traceability purposes and efficient recall management.

Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection

Fiber Bragg optic sensor is embedded in composite material to detect and monitor the damage that occurs in composite structures. In this paper, we deal with the mode-Ι delamination to determine the material strength to crack propagation, using the coupling mode theory and T-matrix method to simulate the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test is modeled in FEM to determine the longitudinal strain. Two models are implemented, the first is the global half model, and the second is the sub-model to represent the FBGs with higher refined mesh. This method can simulate damage in composite structures and converting strain to a wavelength shifting in the FBG spectrum.

Flowering Response of a Red Pitaya Germplasm Collection to Lighting Addition

A collection of thirty cultivars/clones of a red pitaya was used to investigate flowering response to lighting supplementation in the winter season of 2013-2014 in southern Taiwan. The night-breaking treatment was conducted during the period of 10 Oct. 2013 to 5 Mar. 2014 with 4-continuous hours (22.00 – 02.00 hrs) of additional lighting daily using incandescent bulbs (100W). Among cultivars and clones tested, twenty-three genotypes, most belonging to the red-magenta flesh type, were found to have positively flowering response to the lighting treatment. The duration of night-breaking treatment for successful flowering initiation varied from 33- 48 days. The lighting-sensitive genotypes bore 1-2 flowering flushes. Floral and fruiting stages took 21-26 and 46-59 days, respectively. Among sixteen fruiting genotypes, the highest fruit set rates were found in Damao 9, D4, D13, Chaozou large, Chaozhou 5, Small Nick and F22. Five cultivars and clones (Orejona, D4, Chaozhou large, Chaozhou 5 and Small Nick) produced fruits with an average weight of more than 300 g per fruit which were higher than those of the fruits formed in the summer of 2013. Fruits produced during off-season containing total soluble solids (TSS) from 17.5 to 20.7oBrix, which were higher than those produced inseason.

Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan

The design and plantwide control of an integrated plant where the endothermic 1,4-butanediol dehydrogenation and the exothermic furfural hydrogenation is simultaneously performed in a single reactor is studied. The reactions can be carried out in an adiabatic reactor using small hydrogen excess and with reduced parameter sensitivity. The plant is robust and flexible enough to allow different production rates of γ-butyrolactone and 2-methyl furan, keeping high product purities. Rigorous steady state and dynamic simulations performed in AspenPlus and AspenDynamics to support the conclusions.

Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes

Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These studies focus on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this modification for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).The nanocomposites MWCNTs-calixarene have potential for development of sensor for pollutant monitoring and nanoelectronics devices applications.