Effect of the Internet on Social Capital

Internet access is a vital part of the modern world and an important tool in the education of our children. It is present in schools, homes and even shopping malls. Mastering the use of the internet is likely to be an important skill for those entering the job markets of the future. An internet user can be anyone he or she wants to be in an online chat room, or play thrilling and challenging games against other players from all corners of the globe. It seems at present time (or near future) for many people relationships in the real world may be neglected as those in the virtual world increase in importance. Internet is provided a fast mode of transportation caused freedom from family bonds and mixing with different cultures and new communities. This research is an attempt to study effect of Internet on Social capital. For this purpose a survey technique on the sample size amounted 168 students of Payame Noor University of Kermanshah city in country of Iran were considered. Degree of social capital is moderate. With the help of the Multi-variable Regression, variables of Iranian message attractive, Interest to internet with effect of positive and variable Creating a cordial atmosphere with negative effect be significant.

Performance Analysis of a WiMax/Wi-Fi System Whilst Streaming a Video Conference Application

WiMAX and Wi-Fi are considered as the promising broadband access solutions for wireless MAN’s and LANs, respectively. In the recent works WiMAX is considered suitable as a backhaul service to connect multiple dispersed Wi-Fi ‘hotspots’. Hence a new integrated WiMAX/Wi-Fi architecture has been proposed in literatures. In this paper the performance of an integrated WiMAX/Wi-Fi network has been investigated by streaming a video conference application. The difference in performance between the two protocols is compared with respect to video conferencing. The Heterogeneous network was simulated in the OPNET simulator.

Auto Tuning PID Controller based on Improved Genetic Algorithm for Reverse Osmosis Plant

An optimal control of Reverse Osmosis (RO) plant is studied in this paper utilizing the auto tuning concept in conjunction with PID controller. A control scheme composing an auto tuning stochastic technique based on an improved Genetic Algorithm (GA) is proposed. For better evaluation of the process in GA, objective function defined newly in sense of root mean square error has been used. Also in order to achieve better performance of GA, more pureness and longer period of random number generation in operation are sought. The main improvement is made by replacing the uniform distribution random number generator in conventional GA technique to newly designed hybrid random generator composed of Cauchy distribution and linear congruential generator, which provides independent and different random numbers at each individual steps in Genetic operation. The performance of newly proposed GA tuned controller is compared with those of conventional ones via simulation.

Binary Phase-Only Filter Watermarking with Quantized Embedding

The binary phase-only filter digital watermarking embeds the phase information of the discrete Fourier transform of the image into the corresponding magnitudes for better image authentication. The paper proposed an approach of how to implement watermark embedding by quantizing the magnitude, with discussing how to regulate the quantization steps based on the frequencies of the magnitude coefficients of the embedded watermark, and how to embed the watermark at low frequency quantization. The theoretical analysis and simulation results show that algorithm flexibility, security, watermark imperceptibility and detection performance of the binary phase-only filter digital watermarking can be effectively improved with quantization based watermark embedding, and the robustness against JPEG compression will also be increased to some extent.

Effect of Flaying Capacitors on Improving the 4 Level Three-Cell Inverter

With the rapid advanced of technology, the industrial processes become increasingly demanding, from the point of view, power quality and controllability. The advent of multi levels inverters responds partially to these requirements. But actually, the new generation of multi-cells inverters permits to reach more performances, since, it offers more voltage levels. The disadvantage in the increase of voltage levels by the number of cells in cascades is on account of series igbts synchronisation loss, from where, a limitation of cells in cascade to 4. Regarding to these constraints, a new topology is proposed in this paper, which increases the voltage levels of the three-cell inverter from 4 to 8; with the same number of igbts, and using less stored energy in the flaying capacitors. The details of operation and modelling of this new inverter structure are also presented, then tested thanks to a three phase induction motor. KeywordsFlaying capacitors, Multi-cells inverter, pwm, switchers, modelling.

Quantitative Estimation of Periodicities in Lyari River Flow Routing

The hydrologic time series data display periodic structure and periodic autoregressive process receives considerable attention in modeling of such series. In this communication long term record of monthly waste flow of Lyari river is utilized to quantify by using PAR modeling technique. The parameters of model are estimated by using Frances & Paap methodology. This study shows that periodic autoregressive model of order 2 is the most parsimonious model for assessing periodicity in waste flow of the river. A careful statistical analysis of residuals of PAR (2) model is used for establishing goodness of fit. The forecast by using proposed model confirms significance and effectiveness of the model.

A Comparative Study into Observer based Fault Detection and Diagnosis in DC Motors: Part-I

A model based fault detection and diagnosis technique for DC motor is proposed in this paper. Fault detection using Kalman filter and its different variants are compared. Only incipient faults are considered for the study. The Kalman Filter iterations and all the related computations required for fault detection and fault confirmation are presented. A second order linear state space model of DC motor is used for this work. A comparative assessment of the estimates computed from four different observers and their relative performance is evaluated.

Optimal Algorithm for Constructing the Delaunay Triangulation in Ed

In this paper we propose a new approach to constructing the Delaunay Triangulation and the optimum algorithm for the case of multidimensional spaces (d ≥ 2). Analysing the modern state, it is possible to draw a conclusion, that the ideas for the existing effective algorithms developed for the case of d ≥ 2 are not simple to generalize on a multidimensional case, without the loss of efficiency. We offer for the solving this problem an effective algorithm that satisfies all the given requirements. But theoretical complexity of the problem it is impossible to improve as the Worst - Case Optimality for algorithms of solving such a problem is proved.

Weak Measurement Theory for Discrete Scales

With the increasing spread of computers and the internet among culturally, linguistically and geographically diverse communities, issues of internationalization and localization and becoming increasingly important. For some of the issues such as different scales for length and temperature, there is a well-developed measurement theory. For others such as date formats no such theory will be possible. This paper fills a gap by developing a measurement theory for a class of scales previously overlooked, based on discrete and interval-valued scales such as spanner and shoe sizes. The paper gives a theoretical foundation for a class of data representation problems.

Molecular Docking on Recomposed versus Crystallographic Structures of Zn-Dependent Enzymes and their Natural Inhibitors

Matrix metalloproteinases (MMP) are a class of structural and functional related enzymes involved in altering the natural elements of the extracellular matrix. Most of the MMP structures are cristalographycally determined and published in WorldWide ProteinDataBank, isolated, in full structure or bound to natural or synthetic inhibitors. This study proposes an algorithm to replace missing crystallographic structures in PDB database. We have compared the results of a chosen docking algorithm with a known crystallographic structure in order to validate enzyme sites reconstruction there where crystallographic data are missing.

Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians

In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.

Principal Component Analysis-Ranking as a Variable Selection Method for the Simultaneous Spectrophotometric Determination of Phenol, Resorcinol and Catechol in Real Samples

Simultaneous determination of multicomponents of phenol, resorcinol and catechol with a chemometric technique a PCranking artificial neural network (PCranking-ANN) algorithm is reported in this study. Based on the data correlation coefficient method, 3 representative PCs are selected from the scores of original UV spectral data (35 PCs) as the original input patterns for ANN to build a neural network model. The results obtained by iterating 8000 .The RMSEP for phenol, resorcinol and catechol with PCranking- ANN were 0.6680, 0.0766 and 0.1033, respectively. Calibration matrices were 0.50-21.0, 0.50-15.1 and 0.50-20.0 μg ml-1 for phenol, resorcinol and catechol, respectively. The proposed method was successfully applied for the determination of phenol, resorcinol and catechol in synthetic and water samples.

Anomaly Detection using Neuro Fuzzy system

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

The Use of Minor Setups in an EPQ Model with Constrained Production Period Length

Extensive research has been devoted to economic production quantity (EPQ) problem. However, no attention has been paid to problems where production period length is constrained. In this paper, we address the problem of deciding the optimal production quantity and the number of minor setups within each cycle, in which, production period length is constrained but a minor setup is possible for pass the constraint. A mathematical model is developed and Iterated Local Search (ILS) is proposed to solve this problem. Finally, solution procedure illustrated with a numerical example and results are analyzed.

An Improved Fast Search Method Using Histogram Features for DNA Sequence Database

In this paper, we propose an efficient hierarchical DNA sequence search method to improve the search speed while the accuracy is being kept constant. For a given query DNA sequence, firstly, a fast local search method using histogram features is used as a filtering mechanism before scanning the sequences in the database. An overlapping processing is newly added to improve the robustness of the algorithm. A large number of DNA sequences with low similarity will be excluded for latter searching. The Smith-Waterman algorithm is then applied to each remainder sequences. Experimental results using GenBank sequence data show the proposed method combining histogram information and Smith-Waterman algorithm is more efficient for DNA sequence search.

Development and Evaluation of a Dynamic Cardiac Phantom for use in Nuclear Medicine

The aim of this study was to develop a dynamic cardiac phantom for quality control in myocardial scintigraphy. The dynamic heart phantom constructed only contained the left ventricle, made of elastic material (latex), comprising two cavities: one internal and one external. The data showed a non-significant variation in the values of left ventricular ejection fraction (LVEF) obtained by varying the heart rate. It was also possible to evaluate the ejection fraction (LVEF) through different arrays of image acquisition and to perform an intercomparison of LVEF by two different scintillation cameras. The results of the quality control tests were satisfactory, showing that they can be used as parameters in future assessments. The new dynamic heart phantom was demonstrated to be effective for use in LVEF measurements. Therefore, the new heart simulator is useful for the quality control of scintigraphic cameras.

A Model for Application of Knowledge Management in Public Organizations in Iran

This study examines knowledge management in the public organizations in Iran. The purpose of this article is to provide a conceptual framework for application of knowledge management in public organizations. The study indicates that an increasing tendency for implementation of knowledge management in organizations is emerging. Nonetheless knowledge management in public organizations is toddler and little has been done to bring the subject to use in the public sector. The globalization of change and popularization of some values like participation, citizen-orientation and knowledge-orientation in the new theories of public administration requires that the knowledge management is considered and attend to in the public sector. This study holds that a knowledge management framework for public organizations is different from this in the public sector, because public sector is stakeholder-dependent while the private is shareholder-dependent. Based on the research, we provide a conceptual model. The model proposed involves three factors: Organizational, knowledge citizens and contextual factors. The study results indicate these factors affect on knowledge management in public organizations in Iran.

Worker Behavior Interpretation for Flexible Production

This paper addresses the problem of recognizing and interpreting the behavior of human workers in industrial environments for the purpose of integrating humans in software controlled manufacturing environments. In this work we propose a generic concept in order to derive solutions for task-related manual production applications. Thus, we are able to use a versatile concept providing flexible components and being less restricted to a specific problem or application. We instantiate our concept in a spot welding scenario in which the behavior of a human worker is interpreted when performing a welding task with a hand welding gun. We acquire signals from inertial sensors, video cameras and triggers and recognize atomic actions by using pose data from a marker based video tracking system and movement data from inertial sensors. Recognized atomic actions are analyzed on a higher evaluation level by a finite state machine.

Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums

In this paper a method for designing of nonlinear controller for a fuzzy model of Double Inverted Pendulum is proposed. This system can be considered as a fuzzy large-scale system that includes offset terms and disturbance in each subsystem. Offset terms are deterministic and disturbances are satisfied a matching condition that is mentioned in the paper. Based on Lyapunov theorem, a nonlinear controller is designed for this fuzzy system (as a model reference base) which is simple in computation and guarantees stability. This idea can be used for other fuzzy large- scale systems that include more subsystems Finally, the results are shown.

Greek Compounds: A Challenging Case for the Parsing Techniques of PC-KIMMO v.2

In this paper we describe the recognition process of Greek compound words using the PC-KIMMO software. We try to show certain limitations of the system with respect to the principles of compound formation in Greek. Moreover, we discuss the computational processing of phenomena such as stress and syllabification which are indispensable for the analysis of such constructions and we try to propose linguistically-acceptable solutions within the particular system.