Video Classification by Partitioned Frequency Spectra of Repeating Movements

In this paper we present a system for classifying videos by frequency spectra. Many videos contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Motion of these areas usually repeats with a certain main frequency and several side frequencies. Transforming repeating motion to its frequency domain via FFT reveals these frequencies. Average amplitudes of frequency intervals can be seen as features of cyclic motion. Hence determining these features can help to classify videos with repeating movements. In this paper we explain how to compute frequency spectra for video clips and how to use them for classifying. Our approach utilizes series of image moments as a function. This function again is transformed into its frequency domain.

A Bionic Approach to Dynamic, Multimodal Scene Perception and Interpretation in Buildings

Today, building automation is advancing from simple monitoring and control tasks of lightning and heating towards more and more complex applications that require a dynamic perception and interpretation of different scenes occurring in a building. Current approaches cannot handle these newly upcoming demands. In this article, a bionically inspired approach for multimodal, dynamic scene perception and interpretation is presented, which is based on neuroscientific and neuro-psychological research findings about the perceptual system of the human brain. This approach bases on data from diverse sensory modalities being processed in a so-called neuro-symbolic network. With its parallel structure and with its basic elements being information processing and storing units at the same time, a very efficient method for scene perception is provided overcoming the problems and bottlenecks of classical dynamic scene interpretation systems.

Double Reduction of Ada-ECATNet Representation using Rewriting Logic

One major difficulty that faces developers of concurrent and distributed software is analysis for concurrency based faults like deadlocks. Petri nets are used extensively in the verification of correctness of concurrent programs. ECATNets [2] are a category of algebraic Petri nets based on a sound combination of algebraic abstract types and high-level Petri nets. ECATNets have 'sound' and 'complete' semantics because of their integration in rewriting logic [12] and its programming language Maude [13]. Rewriting logic is considered as one of very powerful logics in terms of description, verification and programming of concurrent systems. We proposed in [4] a method for translating Ada-95 tasking programs to ECATNets formalism (Ada-ECATNet). In this paper, we show that ECATNets formalism provides a more compact translation for Ada programs compared to the other approaches based on simple Petri nets or Colored Petri nets (CPNs). Such translation doesn-t reduce only the size of program, but reduces also the number of program states. We show also, how this compact Ada-ECATNet may be reduced again by applying reduction rules on it. This double reduction of Ada-ECATNet permits a considerable minimization of the memory space and run time of corresponding Maude program.

Segmenting Ultrasound B-Mode Images Using RiIG Distributions and Stochastic Optimization

In this paper, we propose a novel algorithm for delineating the endocardial wall from a human heart ultrasound scan. We assume that the gray levels in the ultrasound images are independent and identically distributed random variables with different Rician Inverse Gaussian (RiIG) distributions. Both synthetic and real clinical data will be used for testing the algorithm. Algorithm performance will be evaluated using the expert radiologist evaluation of a soft copy of an ultrasound scan during the scanning process and secondly, doctor’s conclusion after going through a printed copy of the same scan. Successful implementation of this algorithm should make it possible to differentiate normal from abnormal soft tissue and help disease identification, what stage the disease is in and how best to treat the patient. We hope that an automated system that uses this algorithm will be useful in public hospitals especially in Third World countries where problems such as shortage of skilled radiologists and shortage of ultrasound machines are common. These public hospitals are usually the first and last stop for most patients in these countries.

Design of OTA with Common Drain and Folded Cascade Used in ADC

In this report, an OTA which is used in fully differential pipelined ADC was described. Using gain-boost architecture with difference-ended amplifier, this OTA achieve high-gain and high-speed. Besides, the CMFB circuit is also used, and some methods are concerned to improve the performance. Then, by optimization the layout design, OTA-s mismatch was reduced. This design was using TSMC 0.18um CMOS process and simulation both schematic and layout in Cadence. The result of the simulation shows that the OTA has a gain up to 80dB,a unity gain bandwidth of about 1.437GHz for a 2pF load, a slew rate is about 428V/μs, a output swing is 0.2V~1.35V, with the power supply of 1.8V, the power consumption is 88mW. This amplifier was used in a 10bit 150MHz pipelined ADC.

Statistical Analysis of Different Configurations of Hybrid Doped Fiber Amplifiers

Wavelength multiplexing (WDM) technology along with optical amplifiers is used for optical communication systems in S-band, C-band and L-band. To improve the overall system performance Hybrid amplifiers consisting of cascaded TDFA and EDFA with different gain bandwidths are preferred for long haul wavelength multiplexed optical communication systems. This paper deals with statistical analysis of different configuration of hybrid amplifier i.e. analysis of TDFA-EDFA configuration and EDFA – TDFA configuration. In this paper One-Way ANOVA method is used for statistical analysis.

When Construction Material Traders Goes Electronic: Analysis of SMEs in Malaysian Construction Industry

This paper analyzed the perception of e-commerce application services by construction material traders in Malaysia. Five attributes were tested: usability, reputation, trust, privacy and familiarity. Study methodology consists of survey questionnaire and statistical analysis that includes reliability analysis, factor analysis, ANOVA and regression analysis. The respondents were construction material traders, including hardware stores in Klang Valley, Kuala Lumpur. Findings support that usability and familiarity with e-commerce services in Malaysia have insignificant influence on the acceptance of e-commerce application. However, reputation, trust and privacy attributes have significant influence on the choice of e-commerce acceptance by construction material traders. E-commerce applications studied included customer database, e-selling, emarketing, e-payment, e-buying and online advertising. Assumptions are made that traders have basic knowledge and exposure to ICT services. i.e. internet service and computers. Study concludes that reputation, privacy and trust are the three website attributes that influence the acceptance of e-commerce by construction material traders.

Forecasting e-Learning Efficiency by Using Artificial Neural Networks and a Balanced Score Card

Forecasting the values of the indicators, which characterize the effectiveness of performance of organizations is of great importance for their successful development. Such forecasting is necessary in order to assess the current state and to foresee future developments, so that measures to improve the organization-s activity could be undertaken in time. The article presents an overview of the applied mathematical and statistical methods for developing forecasts. Special attention is paid to artificial neural networks as a forecasting tool. Their strengths and weaknesses are analyzed and a synopsis is made of the application of artificial neural networks in the field of forecasting of the values of different education efficiency indicators. A method of evaluation of the activity of universities using the Balanced Scorecard is proposed and Key Performance Indicators for assessment of e-learning are selected. Resulting indicators for the evaluation of efficiency of the activity are proposed. An artificial neural network is constructed and applied in the forecasting of the values of indicators for e-learning efficiency on the basis of the KPI values.

A K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems

Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Object-Oriented systems. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the categorization of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results are measured in terms of accuracy of prediction, probability of Detection and Probability of False Alarms.

Numerical Analysis of Air Flow and Conjugated Heat Transfer in Internally Grooved Parallel- Plate Channels

A numerical investigation of surface heat transfer characteristics of turbulent air flows in different parallel plate grooved channels is performed using CFD code. The results are obtained for Reynolds number ranging from 10,000 to 30,000 and for arc-shaped and rectangular grooved channels. The influence of different geometric parameters of dimples as well as the number of them and the geometric and thermophysical properties of channel walls are studied. It is found that there exists an optimum value for depth of dimples in which the largest wall heat flux can be achieved. Also, the results show a critical value for the ratio of wall thermal conductivity to the one of fluid in which the dependence of wall heat flux to this ratio almost vanishes. In most cases examined, heat transfer enhancement is larger for arc-shaped grooved channels than rectangular ones.

Robust Integrated Design for a Mechatronic Feed Drive System of Machine Tools

This paper aims at to develop a robust optimization methodology for the mechatronic modules of machine tools by considering all important characteristics from all structural and control domains in one single process. The relationship between these two domains is strongly coupled. In order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the concurrent integrated design method Design For Control (DFC), will be employed in this paper. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. Pro/Engineer and AnSys are first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. In addition, the robust controller,based on Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Finally, the technology of design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved.

Effective Self-Preservation of Methane Hydrate Particles in Crude Oils

In this work we investigated the behavior of methane hydrates dispersed in crude oils from different fields at temperatures below 0°C. In case of crude oil emulsion the size of water droplets is in the range of 50e100"m. The size of hydrate particles formed from droplets is the same. The self-preservation is not expected in this field. However, the self-preservation of hydrates with the size of particles 24±18"m (electron microscopy data) in suspensions is observed. Similar results were obtained for four different kinds of crude oil and model system such as asphaltenes, resins and wax in ndecane. This result can allow developing effective methods to prevent the formation and elimination of gas-hydrate plugs in pipelines under low temperature conditions (e. g. in Eastern Siberia). There is a prospective to use experiment results for working out the technology of associated petroleum gas recovery.

Scheduling a Flexible Flow Shops Problem using DEA

This paper considers a scheduling problem in flexible flow shops environment with the aim of minimizing two important criteria including makespan and cumulative tardiness of jobs. Since the proposed problem is known as an Np-hard problem in literature, we have to develop a meta-heuristic to solve it. We considered general structure of Genetic Algorithm (GA) and developed a new version of that based on Data Envelopment Analysis (DEA). Two objective functions assumed as two different inputs for each Decision Making Unit (DMU). In this paper we focused on efficiency score of DMUs and efficient frontier concept in DEA technique. After introducing the method we defined two different scenarios with considering two types of mutation operator. Also we provided an experimental design with some computational results to show the performance of algorithm. The results show that the algorithm implements in a reasonable time.

A Multi-Objective Model for Supply Chain Network Design under Stochastic Demand

In this article, the design of a Supply Chain Network (SCN) consisting of several suppliers, production plants, distribution centers and retailers, is considered. Demands of retailers are considered stochastic parameters, so we generate amounts of data via simulation to extract a few demand scenarios. Then a mixed integer two-stage programming model is developed to optimize simultaneously two objectives: (1) minimization the fixed and variable cost, (2) maximization the service level. A weighting method is utilized to solve this two objective problem and a numerical example is made to show the performance of the model.

Public Transport: Punctuality Index for Bus Operation

Public bus service plays a significant role in our society as people movers and to facilitate travels within towns and districts. The quality of service of public bus is always being regarded as poor, or rather, underestimated as second class means of transportation. Reliability of service, or the ability to deliver service as planned, is one key element in perceiving the quality of bus service and the punctuality index is one of the performance parameters in determining the service reliability. This study concentrates on evaluating the reliability performance of bus operation using punctuality index assessment. A week data for each of six city bus routes is recorded using the on-board methodology to calculate the punctuality index for city bus service in Kota Bharu. The results revealed that the punctuality index for the whole city bus network is 94.25% (LOS B).

Integrate Communication Modeling into the Design Modeling at Early Stages of the Design Flow Case Study: Unmanned Aerial Vehicle (UAV)

This paper shows how we can integrate communication modeling into the design modeling at early stages of the design flow. We consider effect of incorporating noise such as impulsive noise on system stability. We show that with change of the system model and investigate the system performance under the different communication effects. We modeled a unmanned aerial vehicle (UAV) as a demonstration using SystemC methodology. Moreover the system is modeled by joining the capabilities of UML and SystemC to operate at system level.

The Determination of Rating Points of Objects with Qualitative Characteristics and their Usagein Decision Making Problems

The paper presents the method developed to assess rating points of objects with qualitative indexes. The novelty of the method lies in the fact that the authors use linguistic scales that allow to formalize the values of the indexes with the help of fuzzy sets. As a result it is possible to operate correctly with dissimilar indexes on the unified basis and to get stable final results. The obtained rating points are used in decision making based on fuzzy expert opinions.

Noise Factors of RFID-Aided Positioning

In recent years, Radio Frequency Identification (RFID) is followed with interest by many researches, especially for the purpose of indoor positioning as the innate properties of RFID are profitable for achieving it. A lot of algorithms or schemes are proposed to be used in the RFID-based positioning system, but most of them are lack of environmental consideration and it induces inaccuracy of application. In this research, a lot of algorithms and schemes of RFID indoor positioning are discussed to see whether effective or not on application, and some rules are summarized for achieving accurate positioning. On the other hand, a new term “Noise Factor" is involved to describe the signal loss between the target and the obstacle. As a result, experimental data can be obtained but not only simulation; and the performance of the positioning system can be expressed substantially.

Design, Modeling and Fabrication of a Tactile Sensor and Display System for Application in Laparoscopic Surgery

One of the major disadvantages of the minimally invasive surgery (MIS) is the lack of tactile feedback to the surgeon. In order to identify and avoid any damage to the grasped complex tissue by endoscopic graspers, it is important to measure the local softness of tissue during MIS. One way to display the measured softness to the surgeon is a graphical method. In this paper, a new tactile sensor has been reported. The tactile sensor consists of an array of four softness sensors, which are integrated into the jaws of a modified commercial endoscopic grasper. Each individual softness sensor consists of two piezoelectric polymer Polyvinylidene Fluoride (PVDF) films, which are positioned below a rigid and a compliant cylinder. The compliant cylinder is fabricated using a micro molding technique. The combination of output voltages from PVDF films is used to determine the softness of the grasped object. The theoretical analysis of the sensor is also presented. A method has been developed with the aim of reproducing the tactile softness to the surgeon by using a graphical method. In this approach, the proposed system, including the interfacing and the data acquisition card, receives signals from the array of softness sensors. After the signals are processed, the tactile information is displayed by means of a color coding method. It is shown that the degrees of softness of the grasped objects/tissues can be visually differentiated and displayed on a monitor.

Performance Analysis of Adaptive LMS Filter through Regression Analysis using SystemC

The LMS adaptive filter has several parameters which can affect their performance. From among these parameters, most papers handle the step size parameter for controlling the performance. In this paper, we approach three parameters: step-size, filter tap-size and filter form. The regression analysis is used for defining the relation between parameters and performance of LMS adaptive filter with using the system level simulation results. The results present that all parameters have performance trends in each own particular form, which can be estimated from equations drawn by regression analysis.