Emotion Dampening Strategy and Internalizing Problem Behavior: Affect Intensity as Control Variables

Contrary to negative emotion regulation, coping with positive moods have received less attention in adolescent adjustment. However, some research has found that everyone is different on dealing with their positive emotions, which affects their adaptation and well-being. The purpose of the present study was to investigate the relationship between positive emotions dampening and internalizing behavior problems of adolescent in Taiwan. A survey was conducted and 208 students (12 to14 years old) completed the strengths and difficulties questionnaire (SDQ), the Affect Intensity Measure, and the positive emotions dampening scale. Analysis methods such as descriptive statistics, t-test, Pearson correlations and multiple regression were adapted. The results were as follows: Emotionality and internalizing problem behavior have significant gender differences. Compared to boys, girls have a higher score on negative emotionality and are at a higher risk for internalizing symptoms. However, there are no gender differences on positive emotion dampening. Additionally, in the circumstance that negative emotionality acted as the control variable, positive emotion dampening strategy was (positive) related to internalizing behavior problems. Given the results of this study, it is suggested that coaching deconstructive positive emotion strategies is to assist adolescents with internalizing behavior problems is encouraged.

Interoperability and Performance Analysis of IEC61850 Based Substation Protection System

Since IEC61850 substation communication standard represents the trend to develop new generations of Substation Automation System (SAS), many IED manufacturers pursue this technique and apply for KEMA. In order to put on the market to meet customer demand as fast as possible, manufacturers often apply their products only for basic environment standard certification but claim to conform to IEC61850 certification. Since verification institutes generally perform verification tests only on specific IEDs of the manufacturers, the interoperability between all certified IEDs cannot be guaranteed. Therefore the interoperability between IEDs from different manufacturers needs to be tested. Based upon the above reasons, this study applies the definitions of the information models, communication service, GOOSE functionality and Substation Configuration Language (SCL) of the IEC61850 to build the concept of communication protocols, and build the test environment. The procedures of the test of the data collection and exchange of the P2P communication mode and Client / Server communication mode in IEC61850 are outlined as follows. First, test the IED GOOSE messages communication capability from different manufacturers. Second, collect IED data from each IED with SCADA system and use HMI to display the SCADA platform. Finally, problems generally encountered in the test procedure are summarized.

Formation and Development of a New System of Government of the Republic of Kazakhstan in the Globalization

The concept of the new government should focus on forming a new relationship between public servants and citizens of the state, formed on the principles of transparency, accountability, protection of citizens' rights. These principles are laid down in the problem of administrative reform in the Republic of Kazakhstan. Also, this wish arises, contributing to the improvement of the system of political management in our country. For the full realization of the goals is necessary to develop a special state program designed to improve the regulatory framework for public service, improving training, retraining and advanced training of civil servants, forming a system of incentives in public service and other activities aimed at achieving the efficiency of the entire system government.

CFD Simulations to Validate Two and Three Phase Up-flow in Bubble Columns

Bubble columns have a variety of applications in absorption, bio-reactions, catalytic slurry reactions, and coal liquefaction; because they are simple to operate, provide good heat and mass transfer, having less operational cost. The use of Computational Fluid Dynamics (CFD) for bubble column becomes important, since it can describe the fluid hydrodynamics on both local and global scale. Euler- Euler two-phase fluid model has been used to simulate two-phase (air and water) transient up-flow in bubble column (15cm diameter) using FLUENT6.3. These simulations and experiments were operated over a range of superficial gas velocities in the bubbly flow and churn turbulent regime (1 to16 cm/s) at ambient conditions. Liquid velocity was varied from 0 to 16cm/s. The turbulence in the liquid phase is described using the standard k-ε model. The interactions between the two phases are described through drag coefficient formulations (Schiller Neumann). The objectives are to validate CFD simulations with experimental data, and to obtain grid-independent numerical solutions. Quantitatively good agreements are obtained between experimental data for hold-up and simulation values. Axial liquid velocity profiles and gas holdup profiles were also obtained for the simulation.

Modeling and Simulation of Photovoltaic based LED Lighting System

Although lighting systems powered by Photovoltaic (PV) cells have existed for many years, they are not widely used, especially in lighting for buildings, due to their high initial cost and low conversion efficiency. One of the technical challenges facing PV powered lighting systems has been how to use dc power generated by the PV module to energize common light sources that are designed to operate efficiently under ac power. Usually, the efficiency of the dc light sources is very poor compared to ac light sources. Rapid developments in LED lighting systems have made this technology a potential candidate for PV powered lighting systems. This study analyzed the efficiency of each component of PV powered lighting systems to identify optimum system configurations for different applications.

Fast Extraction of Edge Histogram in DCT Domain based on MPEG7

In these days, multimedia data is transmitted and processed in compressed format. Due to the decoding procedure and filtering for edge detection, the feature extraction process of MPEG-7 Edge Histogram Descriptor is time-consuming as well as computationally expensive. To improve efficiency of compressed image retrieval, we propose a new edge histogram generation algorithm in DCT domain in this paper. Using the edge information provided by only two AC coefficients of DCT coefficients, we can get edge directions and strengths directly in DCT domain. The experimental results demonstrate that our system has good performance in terms of retrieval efficiency and effectiveness.

Comparison of SVC and STATCOM in Static Voltage Stability Margin Enhancement

One of the major causes of voltage instability is the reactive power limit of the system. Improving the system's reactive power handling capacity via Flexible AC transmission System (FACTS) devices is a remedy for prevention of voltage instability and hence voltage collapse. In this paper, the effects of SVC and STATCOM in Static Voltage Stability Margin Enhancement will be studied. AC and DC representations of SVC and STATCOM are used in the continuation power flow process in static voltage stability study. The IEEE-14 bus system is simulated to test the increasing loadability. It is found that these controllers significantly increase the loadability margin of power systems.

Towards Security in Virtualization of SDN

In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get furtherdiscussions among the security of SDN virtualization.

Effects of Catalyst Tubes Characteristics on a Steam Reforming Process in Ammonia

The tubes in an Ammonia primary reformer furnace operate close to the limits of materials technology in terms of the stress induced as a result of very high temperatures, combined with large differential pressures across the tube wall. Operation at tube wall temperatures significantly above design can result in a rapid increase in the number of tube failures, since tube life is very sensitive to the absolute operating temperature of the tube. Clearly it is important to measure tube wall temperatures accurately in order to prevent premature tube failure by overheating.. In the present study, the catalyst tubes in an Ammonia primary reformer has been modeled taking into consideration heat, mass and momentum transfer as well as reformer characteristics.. The investigations concern the effects of tube characteristics and superficial tube wall temperatures on of the percentage of heat flux, unconverted methane and production of Hydrogen for various values of steam to carbon ratios. The results show the impact of catalyst tubes length and diameters on the performance of operating parameters in ammonia primary reformers.

Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process

In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Dimensionality Reduction of PSSM Matrix and its Influence on Secondary Structure and Relative Solvent Accessibility Predictions

State-of-the-art methods for secondary structure (Porter, Psi-PRED, SAM-T99sec, Sable) and solvent accessibility (Sable, ACCpro) predictions use evolutionary profiles represented by the position specific scoring matrix (PSSM). It has been demonstrated that evolutionary profiles are the most important features in the feature space for these predictions. Unfortunately applying PSSM matrix leads to high dimensional feature spaces that may create problems with parameter optimization and generalization. Several recently published suggested that applying feature extraction for the PSSM matrix may result in improvements in secondary structure predictions. However, none of the top performing methods considered here utilizes dimensionality reduction to improve generalization. In the present study, we used simple and fast methods for features selection (t-statistics, information gain) that allow us to decrease the dimensionality of PSSM matrix by 75% and improve generalization in the case of secondary structure prediction compared to the Sable server.

On Optimum Stratification

In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.

Totally Integrated Smart Energy System through Data Acquisition via Remote Location

This paper discusses the approach of real-time controlling of the energy management system using the data acquisition tool of LabVIEW. The main idea of this inspiration was to interface the Station (PC) with the system and publish the data on internet using LabVIEW. In this venture, controlling and switching of 3 phase AC loads are effectively and efficiently done. The phases are also sensed through devices. In case of any failure the attached generator starts functioning automatically. The computer sends command to the system and system respond to the request. The modern feature is to access and control the system world-wide using world wide web (internet). This controlling can be done at any time from anywhere to effectively use the energy especially in developing countries where energy management is a big problem. In this system totally integrated devices are used to operate via remote location.

Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction

In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.

A General Regression Test Selection Technique

This paper presents a new methodology to select test cases from regression test suites. The selection strategy is based on analyzing the dynamic behavior of the applications that written in any programming language. Methods based on dynamic analysis are more safe and efficient. We design a technique that combine the code based technique and model based technique, to allow comparing the object oriented of an application that written in any programming language. We have developed a prototype tool that detect changes and select test cases from test suite.

Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery

Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.

How to Integrate Sustainability in Technological Degrees: Robotics at UPC

Embedding Sustainability in technological curricula has become a crucial factor for educating engineers with competences in sustainability. The Technical University of Catalonia UPC, in 2008, designed the Sustainable Technology Excellence Program STEP 2015 in order to assure a successful Sustainability Embedding. This Program takes advantage of the opportunity that the redesign of all Bachelor and Master Degrees in Spain by 2010 under the European Higher Education Area framework offered. The STEP program goals are: to design compulsory courses in each degree; to develop the conceptual base and identify reference models in sustainability for all specialties at UPC; to create an internal interdisciplinary network of faculty from all the schools; to initiate new transdisciplinary research activities in technology-sustainability-education; to spread the know/how attained; to achieve international scientific excellence in technology-sustainability-education and to graduate the first engineers/architects of the new EHEA bachelors with sustainability as a generic competence. Specifically, in this paper authors explain their experience in leading the STEP program, and two examples are presented: Industrial Robotics subject and the curriculum for the School of Architecture.

Model Discovery and Validation for the Qsar Problem using Association Rule Mining

There are several approaches in trying to solve the Quantitative 1Structure-Activity Relationship (QSAR) problem. These approaches are based either on statistical methods or on predictive data mining. Among the statistical methods, one should consider regression analysis, pattern recognition (such as cluster analysis, factor analysis and principal components analysis) or partial least squares. Predictive data mining techniques use either neural networks, or genetic programming, or neuro-fuzzy knowledge. These approaches have a low explanatory capability or non at all. This paper attempts to establish a new approach in solving QSAR problems using descriptive data mining. This way, the relationship between the chemical properties and the activity of a substance would be comprehensibly modeled.

Benchmarking Cleaner Production Performance of Coal-fired Power Plants Using Two-stage Super-efficiency Data Envelopment Analysis

Benchmarking cleaner production performance is an effective way of pollution control and emission reduction in coal-fired power industry. A benchmarking method using two-stage super-efficiency data envelopment analysis for coal-fired power plants is proposed – firstly, to improve the cleaner production performance of DEA-inefficient or weakly DEA-efficient plants, then to select the benchmark from performance-improved power plants. An empirical study is carried out with the survey data of 24 coal-fired power plants. The result shows that in the first stage the performance of 16 plants is DEA-efficient and that of 8 plants is relatively inefficient. The target values for improving DEA-inefficient plants are acquired by projection analysis. The efficient performance of 24 power plants and the benchmarking plant is achieved in the second stage. The two-stage benchmarking method is practical to select the optimal benchmark in the cleaner production of coal-fired power industry and will continuously improve plants- cleaner production performance.

Structural Modelling of the LiCl Aqueous Solution: Using the Hybrid Reverse Monte Carlo (HRMC) Simulation

The Reverse Monte Carlo (RMC) simulation is applied in the study of an aqueous electrolyte LiCl6H2O. On the basis of the available experimental neutron scattering data, RMC computes pair radial distribution functions in order to explore the structural features of the system. The obtained results include some unrealistic features. To overcome this problem, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an energy constraint in addition to the commonly used constraints derived from experimental data. Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in pair partial distribution curves. This kind of study can be considered as a useful test for a defined interaction model for conventional simulation techniques.