An In-Depth Analysis of Open Data Portals as an Emerging Public E-Service

Governments collect and produce large amounts of data. Increasingly, governments worldwide have started to implement open data initiatives and also launch open data portals to enable the release of these data in open and reusable formats. Therefore, a large number of open data repositories, catalogues and portals have been emerging in the world. The greater availability of interoperable and linkable open government data catalyzes secondary use of such data, so they can be used for building useful applications which leverage their value, allow insight, provide access to government services, and support transparency. The efficient development of successful open data portals makes it necessary to evaluate them systematic, in order to understand them better and assess the various types of value they generate, and identify the required improvements for increasing this value. Thus, the attention of this paper is directed particularly to the field of open data portals. The main aim of this paper is to compare the selected open data portals on the national level using content analysis and propose a new evaluation framework, which further improves the quality of these portals. It also establishes a set of considerations for involving businesses and citizens to create eservices and applications that leverage on the datasets available from these portals.

A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this research, intended for concrete products for the construction materials, by using the LCA method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low carbon technologies of the future.

Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water

Collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with higher thickness of MS media indicated recharge rate slightly more than that of all treatment with lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.

Evaluation of Model Evaluation Criterion for Software Development Effort Estimation

Estimation of model parameters is necessary to predict the behavior of a system. Model parameters are estimated using optimization criteria. Most algorithms use historical data to estimate model parameters. The known target values (actual) and the output produced by the model are compared. The differences between the two form the basis to estimate the parameters. In order to compare different models developed using the same data different criteria are used. The data obtained for short scale projects are used here. We consider software effort estimation problem using radial basis function network. The accuracy comparison is made using various existing criteria for one and two predictors. Then, we propose a new criterion based on linear least squares for evaluation and compared the results of one and two predictors. We have considered another data set and evaluated prediction accuracy using the new criterion. The new criterion is easy to comprehend compared to single statistic. Although software effort estimation is considered, this method is applicable for any modeling and prediction.

Diagnostics of Existing Steel Structures of Winter Sport Halls

The paper deals with the diagnostics of steel roof structure of the winter sports halls built in 1970 year. The necessity of the diagnostics has been given by the requirement to the evaluation design of this structure, which has been caused by the new situation in the field of the loadings given by the validity of the European Standards in the Czech Republic from 2010 year. Due to these changes in the normative rules, in practice existing structures are gradually subjected to the evaluation design and depending on its results to the strengthening or reconstruction, respectively. Steel roof is composed of plane truss main girders, purlins and bracings and the roof structure is supported by two arch main girders with the span of L = 84 m. The in situ diagnostics of the roof structure was oriented to the following parts: (i) determination and evaluation of the actual material properties of used steel and (ii) verification of the actual dimensions of the structural members. For the solution the nondestructive methods have been used for in situ measurement. For the indicative determination of steel strengths the modified method based on the determination of Rockwell’s hardness has been used. For the verification of the member’s dimensions (thickness of hollow sections) the ultrasound method has been used. This paper presents the results obtained using these testing methods and their evaluation, from the viewpoint of the usage for the subsequent static assessment and design evaluation of the existing structure. For the comparison, the examples of the similar evaluations realized for steel structures of the stadiums in Olomouc and Jihlava cities are briefly illustrated, too.

A Methodology for the Synthesis of Multi-Processors

Random epistemologies and hash tables have garnered minimal interest from both security experts and experts in the last several years. In fact, few information theorists would disagree with the evaluation of expert systems. In our research, we discover how flip-flop gates can be applied to the study of superpages. Though such a hypothesis at first glance seems perverse, it is derived from known results.

Evaluation of the Laser and Partial Vibration Stimulation on Osteoporosis

The aim of this study is to evaluate the effects of the laser and partial vibration stimulation on the mice tibia with morphological characteristics. Twenty female C57BL/6 mice (12 weeks old) were used for the experiment. The study was carried out on four groups of animals each consisting of five mice. Four groups of mice were ovariectomized. Animals were scanned at 0 and 2 weeks after ovariectomy by using micro computed tomography to estimate morphological characteristics of tibial trabecular bone. Morphological analysis showed that structural parameters of multi-stimuli group appear significantly better phase in BV/TV, BS/BV, Tb.Th, Tb.N, Tb.Sp, and Tb.pf than single stimulation groups. However, single stimulation groups didn’t show significant effect on tibia with Sham group. This study suggests that multi-stimuli may restrain the change as the degenerate phase on osteoporosis in the mice tibia.

Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)

Modelling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve more dense and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.

Optimum Locations for Intercity Bus Terminals with the AHP Approach – Case Study of the City of Esfahan

Interaction between human, location and activity defines space. In the framework of these relations, space is a container for current specifications in relations of the 3 mentioned elements. The change of land utility considered with average performance range, urban regulations, society requirements etc. will provide welfare and comfort for citizens. From an engineering view it is fundamental that choosing a proper location for a specific civil activity requires evaluation of locations from different perspectives. The debate of desirable establishment of municipal service elements in urban regions is one of the most important issues related to urban planning. In this paper, the research type is applicable based on goal, and is descriptive and analytical based on nature. Initially existing terminals in Esfahan are surveyed and then new locations are presented based on evaluated criteria. In order to evaluate terminals based on the considered factors, an AHP model is used at first to estimate weight of different factors and then existing and suggested locations are evaluated using Arc GIS software and AHP model results. The results show that existing bus terminals are located in fairly proper locations. Further results of this study suggest new locations to establish terminals based on urban criteria.

Antioxidative Potential of Aqueous Extract of Ocimum americanum L. Leaves: An in vitro and in vivo Evaluation

Ocimum americanum L (Lamiaceae) is an annual herb that is native to tropical Africa. The in vitro and in vivo antioxidant activity of its aqueous extract was carefully investigated by assessing the DPPH radical scavenging activity, ABTS radical scavenging activity and hydrogen peroxide radical scavenging activity. The reducing power, total phenol, total flavonoids and flavonols content of the extract were also evaluated. The data obtained revealed that the extract is rich in polyphenolic compounds and scavenged the radicals in a concentration dependent manner. This was done in comparison with the standard antioxidants such as BHT and Vitamin C. Also, the induction of oxidative damage with paracetamol (2000 mg/kg) resulted in the elevation of lipid peroxides and significant (P < 0.05) decrease in activities of superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase in the liver and kidney of rats. However, the pretreatment of rats with aqueous extract of O. americanum leaves (200 and 400 mg/kg) and silymarin (100 mg/kg) caused a significant (P < 0.05) reduction in the values of lipid peroxides and restored the levels of antioxidant parameters in these organs. These findings suggest that the leaves of O. americanum have potent antioxidant properties which may be responsible for its acclaimed folkloric uses.

A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR) and SNR Loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.

A New Correlation between SPT and CPT for Various Soils

The Standard Penetration Test (SPT) is the most common in situ test for soil investigations. On the other hand, the Cone Penetration Test (CPT) is considered one of the best investigation tools. Due to the fast and accurate results that can be obtained it complaints the SPT in many applications like field explorations, design parameters, and quality control assessments. Many soil index and engineering properties have been correlated to both of SPT and CPT. Various foundation design methods were developed based on the outcome of these tests. Therefore it is vital to correlate these tests to each other so that either one of the tests can be used in the absence of the other, especially for preliminary evaluation and design purposes. The primary purpose of this study was to investigate the relationships between the SPT and CPT for different type of sandy soils in Florida. Data for this research were collected from number of projects sponsored by the Florida Department of Transportation (FDOT), six sites served as the subject of SPT-CPT correlations. The correlations were established between the cone resistance (qc), sleeve friction (fs) and the uncorrected SPT blow counts (N) for various soils. A positive linear relationship was found between qc, fs and N for various sandy soils. In general, qc versus N showed higher correlation coefficients than fs versus N. qc/N ratios were developed for different soil types and compared to literature values, the results of this research revealed higher ratios than literature values.

Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility

A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.

Effects of IPPC Permits on Ambient Air Quality

The aim of this paper is to give an assessment of environmental effects of IPPC permit conditions of installations that are in specific territory with high concentration of industrial activities. The IPPC permit is the permit that each operator should hold to operate the installation as stated by the directive 2010/75/UE on industrial emissions (integrated pollution prevention and control), known as IED (Industrial Emissions Directive). The IPPC permit includes all the measures necessary to achieve a high level of protection of the environment as a whole, also defining the monitoring requirements as measurement methodology, frequency and evaluation procedure. The emissions monitoring of a specific plant may also give indications of the contribution of these emissions on the air quality of a definite area. So, it is clear that the IPPC permits are important tools both to improve the environmental framework and to achieve the air quality standards, assisting to assess the possible industrial sources contributions to air pollution.

Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator

Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and Validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) where in the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation & Control design team. This paper discusses about the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities.

Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication

In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures.

Tribological Aspects of Advanced Roll Material in Cold Rolling of Stainless Steel

Vancron 40, a nitrided powder metallurgical tool Steel, is used in cold work applications where the predominant failure mechanisms are adhesive wear or galling. Typical applications of Vancron 40 are among others fine blanking, cold extrusion, deep drawing and cold work rolls for cluster mills. Vancron 40 positive results for cold work rolls for cluster mills and as a tool for some severe metal forming process makes it competitive compared to other type of work rolls that require higher precision, among others in cold rolling of thin stainless steel, which required high surface finish quality. In this project, three roll materials for cold rolling of stainless steel strip was examined, Vancron 40, Narva 12B (a high-carbon, high-chromium tool steel alloyed with tungsten) and Supra 3 (a Chromium-molybdenum tungsten-vanadium alloyed high speed steel). The purpose of this project was to study the depth profiles of the ironed stainless steel strips, emergence of galling and to study the lubrication performance used by steel industries. Laboratory experiments were conducted to examine scratch of the strip, galling and surface roughness of the roll materials under severe tribological conditions. The critical sliding length for onset of galling was estimated for stainless steel with four different lubricants. Laboratory experiments result of performance evaluation of resistance capability of rolls toward adhesive wear under severe conditions for low and high reductions. Vancron 40 in combination with cold rolling lubricant gave good surface quality, prevents galling of metal surfaces and good bearing capacity.

Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems

This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Furthermore, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.