Fabrication and Characterization of Poly-Si Vertical Nanowire Thin Film Transistor

In this paper, we present a vertical nanowire thin film transistor with gate-all-around architecture, fabricated using CMOS compatible processes. A novel method of fabricating polysilicon vertical nanowires of diameter as small as 30 nm using wet-etch is presented. Both n-type and p-type vertical poly-silicon nanowire transistors exhibit superior electrical characteristics as compared to planar devices. On a poly-crystalline nanowire of 30 nm diameter, high Ion/Ioff ratio of 106, low drain-induced barrier lowering (DIBL) of 50 mV/V, and low sub-threshold slope SS~100mV/dec are demonstrated for a device with channel length of 100 nm.

Design, Development and Implementation of aTemperature Sensor using Zigbee Concepts

This paper deals with the design, development & implementation of a temperature sensor using zigbee. The main aim of the work undertaken in this paper is to sense the temperature and to display the result on the LCD using the zigbee technology. ZigBee operates in the industrial, scientific and medical (ISM) radio bands; 868 MHz in Europe, 915 MHz in the USA and 2.4 GHz in most jurisdictions worldwide. The technology is intended to be simpler and cheaper than other WPANs such as Bluetooth. The most capable ZigBee node type is said to require only about 10 % of the software of a typical Bluetooth or Wireless Internet node, while the simplest nodes are about 2 %. However, actual code sizes are much higher, more like 50 % of the Bluetooth code size. ZigBee chip vendors have announced 128-kilobyte devices. In this work undertaken in the design & development of the temperature sensor, it senses the temperature and after amplification is then fed to the micro controller, this is then connected to the zigbee module, which transmits the data and at the other end the zigbee reads the data and displays on to the LCD. The software developed is highly accurate and works at a very high speed. The method developed shows the effectiveness of the scheme employed.

High Capacity Spread-Spectrum Watermarking for Telemedicine Applications

This paper presents a new spread-spectrum watermarking algorithm for digital images in discrete wavelet transform (DWT) domain. The algorithm is applied for embedding watermarks like patient identification /source identification or doctors signature in binary image format into host digital radiological image for potential telemedicine applications. Performance of the algorithm is analysed by varying the gain factor, subband decomposition levels, and size of watermark. Simulation results show that the proposed method achieves higher watermarking capacity.

Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series

The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.

A Real-Time Rendering based on Efficient Updating of Static Objects Buffer

Real-time 3D applications have to guarantee interactive rendering speed. There is a restriction for the number of polygons which is rendered due to performance of a graphics hardware or graphics algorithms. Generally, the rendering performance will be drastically increased when handling only the dynamic 3d models, which is much fewer than the static ones. Since shapes and colors of the static objects don-t change when the viewing direction is fixed, the information can be reused. We render huge amounts of polygon those cannot handled by conventional rendering techniques in real-time by using a static object image and merging it with rendering result of the dynamic objects. The performance must be decreased as a consequence of updating the static object image including removing an static object that starts to move, re-rending the other static objects being overlapped by the moving ones. Based on visibility of the object beginning to move, we can skip the updating process. As a result, we enhance rendering performance and reduce differences of rendering speed between each frame. Proposed method renders total 200,000,000 polygons that consist of 500,000 dynamic polygons and the rest are static polygons in about 100 frames per second.

Thermal Performance Analysis of Nanofluids in Microchannel Heat Sinks

In the present study, the pressure drop and laminar convection heat transfer characteristics of nanofluids in microchannel heat sink with square duct are numerically investigated. The water based nanofluids created with Al2O3 and CuO particles in four different volume fractions of 0%, 0.5%, 1%, 1.5% and 2% are used to analyze their effects on heat transfer and the pressure drop. Under the laminar, steady-state flow conditions, the finite volume method is used to solve the governing equations of heat transfer. Mixture Model is considered to simulate the nanofluid flow. For verification of used numerical method, the results obtained from numerical calculations were compared with the results in literature for both pure water and the nanofluids in different volume fractions. The distributions of the particles in base fluid are assumed to be uniform. The results are evaluated in terms of Nusselt number, the pressure drop and heat transfer enhancement. Analysis shows that the nanofluids enhance heat transfer while the Reynolds number and the volume fractions are increasing. The best overall enhancement was obtained at φ=%2 and Re=100 for CuO-water nanofluid.

Solar Radiation Studies for Dubai and Sharjah, UAE

Global Solar Radiation (H) for Dubai and Sharjah, Latitude 25.25oN, Longitude 55oE and 25.29oN, Longitude 55oE respectively have been studied using sunshine hour data (n) of the areas using various methods. These calculated global solar radiation values are then compared to the measured values presented by NASA. Furthermore, the extraterrestrial (H0), diffuse (Hd) and beam radiation (Hb) are also calculated. The diffuse radiation is calculated using methods proposed by Page and Liu and Jordan (L-J). Diffuse Radiation from the Page method is higher than the L-J method. Moreover, the clearness index (KT) signifies a clear sky almost all year round. Rainy days are hardly a few in a year and limited in the months December to March. The temperature remains between 25oC in winter to 44oC in summer and is desirable for thermal applications of solar energy. From the estimated results, it appears that solar radiation can be utilized very efficiently throughout the year for photovoltaic and thermal applications.

Order Reduction using Modified Pole Clustering and Pade Approximations

The authors present a mixed method for reducing the order of the large-scale dynamic systems. In this method, the denominator polynomial of the reduced order model is obtained by using the modified pole clustering technique while the coefficients of the numerator are obtained by Pade approximations. This method is conceptually simple and always generates stable reduced models if the original high-order system is stable. The proposed method is illustrated with the help of the numerical examples taken from the literature.

Motion Recognition Based On Fuzzy WP Feature Extraction Approach

This paper is concerned with motion recognition based fuzzy WP(Wavelet Packet) feature extraction approach from Vicon physical data sets. For this purpose, we use an efficient fuzzy mutual-information-based WP transform for feature extraction. This method estimates the required mutual information using a novel approach based on fuzzy membership function. The physical action data set includes 10 normal and 10 aggressive physical actions that measure the human activity. The data have been collected from 10 subjects using the Vicon 3D tracker. The experiments consist of running, seating, and walking as physical activity motion among various activities. The experimental results revealed that the presented feature extraction approach showed good recognition performance.

A Novel Adaptive Voltage Control Strategy for Boost Converter via Inverse LQ Servo-Control

In this paper, we propose a novel adaptive voltage control strategy for boost converter via Inverse LQ Servo-Control. Our presented strategy is based on an analytical formula of Inverse Linear Quadratic (ILQ) design method, which is not necessary to solve Riccati’s equation directly. The optimal and adaptive controller of the voltage control system is designed. The stability and the robust control are analyzed. Whereas, we can get the analytical solution for the optimal and robust voltage control is achieved through the natural angular velocity within a single parameter and we can change the responses easily via the ILQ control theory. Our method provides effective results as the stable responses and the response times are not drifted even if the condition is changed widely.

Control of Commutation of SR Motor Using Its Magnetic Characteristics and Back-of-Core Saturation Effects

The control of commutation of switched reluctance (SR) motor has nominally depended on a physical position detector. The physical rotor position sensor limits robustness and increases size and inertia of the SR drive system. The paper describes a method to overcome these limitations by using magnetization characteristics of the motor to indicate rotor and stator teeth overlap status. The method is using active current probing pulses of same magnitude that is used to simulate flux linkage in the winding being probed. A microprocessor is used for processing magnetization data to deduce rotor-stator teeth overlap status and hence rotor position. However, the back-of-core saturation and mutual coupling introduces overlap detection errors, hence that of commutation control. This paper presents the concept of the detection scheme and the effects of backof core saturation.

Evaluation of Performance Requirements for Seismic Design of Piping System

The cost of damage to the non-structural systems in critical facilities like nuclear power plants and hospitals can exceed 80% of the total cost of damage during an earthquake. The failure of nonstructural components, especially, piping systems led to leakage of water and subsequent shut-down of hospitals immediately after the event. Consequently, the evaluation of performance of these types of structural configurations has become necessary to mitigate the risk and to achieve reliable designs. This paper focuses on a methodology to evaluate the static and dynamic characteristics of complex actual piping system based on NFPA-13 and SMACNA guidelines. The result of this study revealed that current piping system subjected to design lateral force and design spectrum based on UBC-97 was failed in both cases and mode shapes between piping system and building structure were very different

Integrating Low and High Level Object Recognition Steps

In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

Free Convection in a MHD Porous Cavity with using Lattice Boltzmann Method

We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.

Application the Statistical Conditional Entropy Function for Definition of Cause-and-Effect Relations during Primary Soil Formation

Within the framework of a method of the information theory it is offered statistics and probabilistic model for definition of cause-and-effect relations in the coupled multicomponent subsystems. The quantitative parameter which is defined through conditional and unconditional entropy functions is introduced. The method is applied to the analysis of the experimental data on dynamics of change of the chemical elements composition of plants organs (roots, reproductive organs, leafs and stems). Experiment is directed on studying of temporal processes of primary soil formation and their connection with redistribution dynamics of chemical elements in plant organs. This statistics and probabilistic model allows also quantitatively and unambiguously to specify the directions of the information streams on plant organs.

Stochastic Modeling and Combined Spatial Pattern Analysis of Epidemic Spreading

We present analysis of spatial patterns of generic disease spread simulated by a stochastic long-range correlation SIR model, where individuals can be infected at long distance in a power law distribution. We integrated various tools, namely perimeter, circularity, fractal dimension, and aggregation index to characterize and investigate spatial pattern formations. Our primary goal was to understand for a given model of interest which tool has an advantage over the other and to what extent. We found that perimeter and circularity give information only for a case of strong correlation– while the fractal dimension and aggregation index exhibit the growth rule of pattern formation, depending on the degree of the correlation exponent (β). The aggregation index method used as an alternative method to describe the degree of pathogenic ratio (α). This study may provide a useful approach to characterize and analyze the pattern formation of epidemic spreading

Design of EDFA Gain Controller based on Disturbance Observer Technique

Based on a theoretical erbium-doped fiber amplifier (EDFA) model, we have proposed an application of disturbance observer(DOB) with proportional/integral/differential(PID) controller to EDFA for minimizing gain-transient time of wavelength -division-multiplexing (WDM) multi channels in optical amplifier in channel add/drop networks. We have dramatically reduced the gain-transient time to less than 30μsec by applying DOB with PID controller to the control of amplifier gain. The proposed DOB-based gain control algorithm for EDFA was implemented as a digital control system using TI's DSP(TMS320C28346) chip and experimental results of the system verify the excellent performance of the proposed gain control methodology.

Splitting Modified Donor-Cell Schemes for Spectral Action Balance Equation

The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating propagation velocity terms are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting modified donorcell scheme for avoiding stability problems and prove that it is consistent to the modified donor-cell scheme with same accuracy. The splitting modified donor-cell scheme was adopted to split the wave spectral action balance equation into four one-dimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-cores computer.

Haar wavelet Method for Solving Initial and Boundary Value Problems of Bratu-type

In this paper, we present a framework to determine Haar solutions of Bratu-type equations that are widely applicable in fuel ignition of the combustion theory and heat transfer. The method is proposed by applying Haar series for the highest derivatives and integrate the series. Several examples are given to confirm the efficiency and the accuracy of the proposed algorithm. The results show that the proposed way is quite reasonable when compared to exact solution.

Microstructure Parameters of a Super-Ionic Sample (Csag2i3)

Sample of CsAg2I3 was prepared by solid state reaction. Then, microstructure parameters of this sample have been determined using wide angle X-ray scattering WAXS method. As well as, Cell parameters of crystal structure have been refined using CHEKCELL program. This analysis states that the lattice intrinsic strainof the sample is so small and the crystal size is on the order of 559Å.