An Optimal Unsupervised Satellite image Segmentation Approach Based on Pearson System and k-Means Clustering Algorithm Initialization

This paper presents an optimal and unsupervised satellite image segmentation approach based on Pearson system and k-Means Clustering Algorithm Initialization. Such method could be considered as original by the fact that it utilised K-Means clustering algorithm for an optimal initialisation of image class number on one hand and it exploited Pearson system for an optimal statistical distributions- affectation of each considered class on the other hand. Satellite image exploitation requires the use of different approaches, especially those founded on the unsupervised statistical segmentation principle. Such approaches necessitate definition of several parameters like image class number, class variables- estimation and generalised mixture distributions. Use of statistical images- attributes assured convincing and promoting results under the condition of having an optimal initialisation step with appropriated statistical distributions- affectation. Pearson system associated with a k-means clustering algorithm and Stochastic Expectation-Maximization 'SEM' algorithm could be adapted to such problem. For each image-s class, Pearson system attributes one distribution type according to different parameters and especially the Skewness 'β1' and the kurtosis 'β2'. The different adapted algorithms, K-Means clustering algorithm, SEM algorithm and Pearson system algorithm, are then applied to satellite image segmentation problem. Efficiency of those combined algorithms was firstly validated with the Mean Quadratic Error 'MQE' evaluation, and secondly with visual inspection along several comparisons of these unsupervised images- segmentation.

Statistical Optimization of the Enzymatic Saccharification of the Oil Palm Empty Fruit Bunches

A statistical optimization of the saccharification process of EFB was studied. The statistical analysis was done by applying faced centered central composite design (FCCCD) under response surface methodology (RSM). In this investigation, EFB dose, enzyme dose and saccharification period was examined, and the maximum 53.45% (w/w) yield of reducing sugar was found with 4% (w/v) of EFB, 10% (v/v) of enzyme after 120 hours of incubation. It can be calculated that the conversion rate of cellulose content of the substrate is more than 75% (w/w) which can be considered as a remarkable achievement. All the variables, linear, quadratic and interaction coefficient, were found to be highly significant, other than two coefficients, one quadratic and another interaction coefficient. The coefficient of determination (R2) is 0.9898 that confirms a satisfactory data and indicated that approximately 98.98% of the variability in the dependent variable, saccharification of EFB, could be explained by this model.

Development of an Efficient CVT using Electromecanical System

Continuously variable transmission (CVT) is a type of automatic transmission that can change the gear ratio to any arbitrary setting within the limits. The most common type of CVT operates on a pulley system that allows an infinite variability between highest and lowest gears with no discrete steps. However, the current CVT system with hydraulic actuation method suffers from the power loss. It needs continuous force for the pulley to clamp the belt and hold the torque resulting in large amount of energy consumption. This study focused on the development of an electromechanical actuated control CVT to eliminate the problem that faced by the existing CVT. It is conducted with several steps; computing and selecting the appropriate sizing for stroke length, lead screw system and etc. From the visual observation it was found that the CVT system of this research is satisfactory.

An Integrated Software Architecture for Bandwidth Adaptive Video Streaming

Video streaming over lossy IP networks is very important issues, due to the heterogeneous structure of networks. Infrastructure of the Internet exhibits variable bandwidths, delays, congestions and time-varying packet losses. Because of variable attributes of the Internet, video streaming applications should not only have a good end-to-end transport performance but also have a robust rate control, furthermore multipath rate allocation mechanism. So for providing the video streaming service quality, some other components such as Bandwidth Estimation and Adaptive Rate Controller should be taken into consideration. This paper gives an overview of video streaming concept and bandwidth estimation tools and then introduces special architectures for bandwidth adaptive video streaming. A bandwidth estimation algorithm – pathChirp, Optimized Rate Controllers and Multipath Rate Allocation Algorithm are considered as all-in-one solution for video streaming problem. This solution is directed and optimized by a decision center which is designed for obtaining the maximum quality at the receiving side.

A User Friendly Tool for Performance Evaluation of Different Reference Evapotranspiration Methods

Evapotranspiration (ET) is a major component of the hydrologic cycle and its accurate estimation is essential for hydrological studies. In past, various estimation methods have been developed for different climatological data, and the accuracy of these methods varies with climatic conditions. Reference crop evapotranspiration (ET0) is a key variable in procedures established for estimating evapotranspiration rates of agricultural crops. Values of ET0 are used with crop coefficients for many aspects of irrigation and water resources planning and management. Numerous methods are used for estimating ET0. As per internationally accepted procedures outlined in the United Nations Food and Agriculture Organization-s Irrigation and Drainage Paper No. 56(FAO-56), use of Penman-Monteith equation is recommended for computing ET0 from ground based climatological observations. In the present study, seven methods have been selected for performance evaluation. User friendly software has been developed using programming language visual basic. The visual basic has ability to create graphical environment using less coding. For given data availability the developed software estimates reference evapotranspiration for any given area and period for which data is available. The accuracy of the software has been checked by the examples given in FAO-56.The developed software is a user friendly tool for estimating ET0 under different data availability and climatic conditions.

High Speed Video Transmission for Telemedicine using ATM Technology

In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.

A Single-Period Inventory Problem with Resalable Returns: A Fuzzy Stochastic Approach

In this paper, a single period inventory model with resalable returns has been analyzed in an imprecise and uncertain mixed environment. Demand has been introduced as a fuzzy random variable. In this model, a single order is placed before the start of the selling season. The customer, for a full refund, may return purchased products within a certain time interval. Returned products are resalable, provided they arrive back before the end of the selling season and are found to be undamaged. Products remaining at the end of the season are salvaged. All demands not met directly are lost. The probabilities that a sold product is returned and that a returned product is resalable, both imprecise in a real situation, have been assumed to be fuzzy in nature.

The Induced Generalized Hybrid Averaging Operator and its Application in Financial Decision Making

We present the induced generalized hybrid averaging (IGHA) operator. It is a new aggregation operator that generalizes the hybrid averaging (HA) by using generalized means and order inducing variables. With this formulation, we get a wide range of mean operators such as the induced HA (IHA), the induced hybrid quadratic averaging (IHQA), the HA, etc. The ordered weighted averaging (OWA) operator and the weighted average (WA) are included as special cases of the HA operator. Therefore, with this generalization we can obtain a wide range of aggregation operators such as the induced generalized OWA (IGOWA), the generalized OWA (GOWA), etc. We further generalize the IGHA operator by using quasi-arithmetic means. Then, we get the Quasi-IHA operator. Finally, we also develop an illustrative example of the new approach in a financial decision making problem. The main advantage of the IGHA is that it gives a more complete view of the decision problem to the decision maker because it considers a wide range of situations depending on the operator used.

Optimization of Energy Conservation Potential for VAV Air Conditioning System using Fuzzy based Genetic Algorithm

The objective of this study is to present the test results of variable air volume (VAV) air conditioning system optimized by two objective genetic algorithm (GA). The objective functions are energy savings and thermal comfort. The optimal set points for fuzzy logic controller (FLC) are the supply air temperature (Ts), the supply duct static pressure (Ps), the chilled water temperature (Tw), and zone temperature (Tz) that is taken as the problem variables. Supply airflow rate and chilled water flow rate are considered to be the constraints. The optimal set point values are obtained from GA process and assigned into fuzzy logic controller (FLC) in order to conserve energy and maintain thermal comfort in real time VAV air conditioning system. A VAV air conditioning system with FLC installed in a software laboratory has been taken for the purpose of energy analysis. The total energy saving obtained in VAV GA optimization system with FLC compared with constant air volume (CAV) system is expected to achieve 31.5%. The optimal duct static pressure obtained through Genetic fuzzy methodology attributes to better air distribution by delivering the optimal quantity of supply air to the conditioned space. This combination enhanced the advantages of uniform air distribution, thermal comfort and improved energy savings potential.

Design and Instrumentation of a Benchmark Multivariable Nonlinear Control Laboratory

The purpose of this paper is to present the design and instrumentation of a new benchmark multivariable nonlinear control laboratory. The mathematical model of this system may be used to test the applicability and performance of various nonlinear control procedures. The system is a two degree-of-freedom robotic arm with soft and hard (discontinuous) nonlinear terms. Two novel mechanisms are designed to allow the implementation of adjustable Coulomb friction and backlash.

Material Handling Equipment Selection using Hybrid Monte Carlo Simulation and Analytic Hierarchy Process

The many feasible alternatives and conflicting objectives make equipment selection in materials handling a complicated task. This paper presents utilizing Monte Carlo (MC) simulation combined with the Analytic Hierarchy Process (AHP) to evaluate and select the most appropriate Material Handling Equipment (MHE). The proposed hybrid model was built on the base of material handling equation to identify main and sub criteria critical to MHE selection. The criteria illustrate the properties of the material to be moved, characteristics of the move, and the means by which the materials will be moved. The use of MC simulation beside the AHP is very powerful where it allows the decision maker to represent his/her possible preference judgments as random variables. This will reduce the uncertainty of single point judgment at conventional AHP, and provide more confidence in the decision problem results. A small business pharmaceutical company is used as an example to illustrate the development and application of the proposed model.

Influence of Service and Product Quality towards Customer Satisfaction: A Case Study at the Staff Cafeteria in the Hotel Industry

The main objectives of this study were to identify attributes that influence customer satisfaction and determine their relationships with customer satisfaction. The variables included in this research are place/ambience, food quality and service quality as independent variables and customer satisfaction as the dependent variable. A survey questionnaire which consisted of three parts to measure demographic factors, independent variables, and dependent variables was constructed based on items determined by past research. 149 respondents from one of the well known hotel in Kuala Lumpur, MALAYSIA were selected as a sample. Psychometric testing was conducted to determine the reliability and validity of the questionnaire. From the findings, there were positive significant relationship between place/ambience (r=0.563**, p=0.000) and service quality (r=0.544**, p=0.000) with customer satisfaction. However, although relationship between food quality and customer satisfaction was significant, it was in the negative direction (r=- 0.268**, p=0.001). New findings were discovered after conducting this research and previous research findings were strengthened by the results of this research. Future researchers could concentrate on determining attributes that influence customer satisfaction when cost/price is not a factor and reasons for place/ambience is currently becoming the leading factor in determining customer satisfaction.

Estimation of R= P [Y < X] for Two-parameter Burr Type XII Distribution

In this article, we consider the estimation of P[Y < X], when strength, X and stress, Y are two independent variables of Burr Type XII distribution. The MLE of the R based on one simple iterative procedure is obtained. Assuming that the common parameter is known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator and Bayes estimator of P[Y < X] are discussed. The exact confidence interval of the R is also obtained. Monte Carlo simulations are performed to compare the different proposed methods.

Poverty Measurement by Islamic Institutions

Islamic institutions in Malaysia play a variety of socioeconomic roles such as poverty alleviation. To perform this role, these institutions face a major task in identifying the poverty group. Most of these institutions measure and operationalize poverty from the monetary perspective using variables such as income, expenditure or consumption. In practice, most Islamic institutions in Malaysia use the monetary approach in measuring poverty through the conventional Poverty Line Income (PLI) method and recently, the had al kifayah (HAK) method using total necessities of a household from an Islamic perspective. The objective of this paper is to present the PLI and also the HAK method. This micro-data study would highlight the similarities and differences of both the methods.A survey aided by a structured questionnaire was carried out on 260 selected head of households in the state of Selangor. The paper highlights several demographic factors that are associated with the three monetary indicators in the study, namely income, PLI and HAK. In addition, the study found that these monetary variables are significantly related with each other.

Creativity: A Motivational Tool for Interest and Conceptual Understanding in Science Education

This qualitative, quantitative mixed-method study explores how students- motivation and interest in creative hands-on activities affected their conceptual understanding of science. The objectives of this research include developing a greater understanding about how creative activities, incorporated into the classroom as instructional strategies, increase student motivation and their learning or mastery of science concepts. The creative activities are viewed as a motivational tool, a specific type of task, which have an impact on student goals. Pre-and-post tests, pre-and-post interviews, and student responses measure motivational-goal theory variables, interest in the activity, and conceptual change. Implications for education and future research will be discussed.

Energy Savings in Pumps

This study presents energy saving in general-purpose pumps widely used in industrial applications. Such pumps are normally driven by a constant-speed electrical motor which in most applications must support varying load conditions. This is equivalent to saying the loading conditions mismatch the designed optimal energy consumption requirements of the intended application thus resulting in substantial energy losses. In the held experiments it was indicated that combination of mechanical and electrical speed drives can contribute to lower energy consumption in the pump without negatively distorting the required performance indices of a typical centrifugal pump at substantially lower energy consumption. The registered energy savings were recorded to be within the 15-40% margin. It was also indicated that although VSDs are installed at a cost, the financial burden is balanced against the earnings resulting from the associated energy savings.

Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting

this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects the demand of energy load. So the AR-MCRN is used to learn the relationship between past, previous, and future exogenous and endogenous variables. Experimental results show that using the change in weather components and the change that occurred in past load as inputs to the AR-MCRN, rather than the basic weather parameters and past load itself as inputs to the same network, produce higher accuracy of predicted load. Experimental results also show that using exogenous and endogenous variables as inputs is better than using only the exogenous variables as inputs to the network.

Dynamic Analysis of Nonlinear Models with Infinite Extension by Boundary Elements

The Time-Domain Boundary Element Method (TDBEM) is a well known numerical technique that handles quite properly dynamic analyses considering infinite dimension media. However, when these analyses are also related to nonlinear behavior, very complex numerical procedures arise considering the TD-BEM, which may turn its application prohibitive. In order to avoid this drawback and model nonlinear infinite media, the present work couples two BEM formulations, aiming to achieve the best of two worlds. In this context, the regions expected to behave nonlinearly are discretized by the Domain Boundary Element Method (D-BEM), which has a simpler mathematical formulation but is unable to deal with infinite domain analyses; the TD-BEM is employed as in the sense of an effective non-reflexive boundary. An iterative procedure is considered for the coupling of the TD-BEM and D-BEM, which is based on a relaxed renew of the variables at the common interfaces. Elastoplastic models are focused and different time-steps are allowed to be considered by each BEM formulation in the coupled analysis.

A NonLinear Observer of an Electrical Transformer: A Bond Graph Approach

A bond graph model of an electrical transformer including the nonlinear saturation is presented. A nonlinear observer for the transformer based on multivariable circle criterion in the physical domain is proposed. In order to show the saturation and hysteresis effects on the electrical transformer, simulation results are obtained. Finally, the paper describes that convergence of the estimates to the true states is achieved.

Retrieving Extended High Dynamic Range from Digital Negative Image - An Experiment on Architectural Photo Imaging

The paper explores the development of an optimization of method and apparatus for retrieving extended high dynamic range from digital negative image. Architectural photo imaging can benefit from high dynamic range imaging (HDRI) technique for preserving and presenting sufficient luminance in the shadow and highlight clipping image areas. The HDRI technique that requires multiple exposure images as the source of HDRI rendering may not be effective in terms of time efficiency during the acquisition process and post-processing stage, considering it has numerous potential imaging variables and technical limitations during the multiple exposure process. This paper explores an experimental method and apparatus that aims to expand the dynamic range from digital negative image in HDRI environment. The method and apparatus explored is based on a single source of RAW image acquisition for the use of HDRI post-processing. It will cater the optimization in order to avoid and minimize the conventional HDRI photographic errors caused by different physical conditions during the photographing process and the misalignment of multiple exposed image sequences. The study observes the characteristics and capabilities of RAW image format as digital negative used for the retrieval of extended high dynamic range process in HDRI environment.