Robust Steam Temperature Regulation for Distillation of Essential Oil Extraction Process using Hybrid Fuzzy-PD plus PID Controller

This paper presents a hybrid fuzzy-PD plus PID (HFPP) controller and its application to steam distillation process for essential oil extraction system. Steam temperature is one of the most significant parameters that can influence the composition of essential oil yield. Due to parameter variations and changes in operation conditions during distillation, a robust steam temperature controller becomes nontrivial to avoid the degradation of essential oil quality. Initially, the PRBS input is triggered to the system and output of steam temperature is modeled using ARX model structure. The parameter estimation and tuning method is adopted by simulation using HFPP controller scheme. The effectiveness and robustness of proposed controller technique is validated by real time implementation to the system. The performance of HFPP using 25 and 49 fuzzy rules is compared. The experimental result demonstrates the proposed HFPP using 49 fuzzy rules achieves a better, consistent and robust controller compared to PID when considering the test on tracking the set point and the effects due to disturbance.

A Scenario-Based Approach for the Air Traffic Flow Management Problem with Stochastic Capacities

In this paper, we investigate the strategic stochastic air traffic flow management problem which seeks to balance airspace capacity and demand under weather disruptions. The goal is to reduce the need for myopic tactical decisions that do not account for probabilistic knowledge about the NAS near-future states. We present and discuss a scenario-based modeling approach based on a time-space stochastic process to depict weather disruption occurrences in the NAS. A solution framework is also proposed along with a distributed implementation aimed at overcoming scalability problems. Issues related to this implementation are also discussed.

Compression of Semistructured Documents

EGOTHOR is a search engine that indexes the Web and allows us to search the Web documents. Its hit list contains URL and title of the hits, and also some snippet which tries to shortly show a match. The snippet can be almost always assembled by an algorithm that has a full knowledge of the original document (mostly HTML page). It implies that the search engine is required to store the full text of the documents as a part of the index. Such a requirement leads us to pick up an appropriate compression algorithm which would reduce the space demand. One of the solutions could be to use common compression methods, for instance gzip or bzip2, but it might be preferable if we develop a new method which would take advantage of the document structure, or rather, the textual character of the documents. There already exist a special compression text algorithms and methods for a compression of XML documents. The aim of this paper is an integration of the two approaches to achieve an optimal level of the compression ratio

Using Tabu Search to Analyze the Mauritian Economic Sectors

The aim of this paper is to express the input-output matrix as a linear ordering problem which is classified as an NP-hard problem. We then use a Tabu search algorithm to find the best permutation among sectors in the input-output matrix that will give an optimal solution. This optimal permutation can be useful in designing policies and strategies for economists and government in their goal of maximizing the gross domestic product.

Research on Pressed Pile Test and Finite Element Analysis of Large-diameter Steel Pipe Pile of Zhanjiang Port

In order to study pressed pile test and ultimate bearing capacity character of large-diameter steel pipe pile, based on two high-piled wharfs of Zhanjiang Port, pressed pile test and numerical simulation of three large-diameter steel pipe piles are analyzed in this paper. Anchored pile method is used to pressed pile test, and the curves of Q-s and ultimate bearing capacity are attained. Then the three piles are numerically simulated by ABAQUS, and results of numerical simulation and those of field test are comparatively analyzed. The results show that settlement value of numerical simulation is larger than that of field test in the process of loading, the difference value is widening with the increasing of load, and the ultimate difference value of settlement is 20% to 30%.

One-Dimensional Numerical Investigation of a Cylindrical Micro-Combustor Applying Electrohydrodynamics Effect

In this paper, a one-dimensional numerical approach is used to study the effect of applying electrohydrodynamics on the temperature and species mass fraction profiles along the microcombustor. Premixed mixture is H2-Air with a multi-step chemistry (9 species and 19 reactions). In the micro-scale combustion because of the increasing ratio of area-to-volume, thermal and radical quenching mechanisms are important. Also, there is a significant heat loss from the combustor walls. By inserting a number of electrodes into micro-combustor and applying high voltage to them corona discharge occurs. This leads in moving of induced ions toward natural molecules and colliding with them. So this phenomenon causes the movement of the molecules and reattaches the flow to the walls. It increases the velocity near the walls that reduces the wall boundary layer. Consequently, applying electrohydrodynamics mechanism can enhance the temperature profile in the microcombustor. Ultimately, it prevents the flame quenching in microcombustor.

ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal

In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.

Analyzing the Factors Influencing Exclusive Breastfeeding Using the Generalized Poisson Regression Model

Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. Exclusive breastfeeding during the first 6 months of life is of fundamental importance because it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, in developed countries, exclusive breastfeeding has decreased the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we study the factors that influence exclusive breastfeeding and use the Generalized Poisson regression model to analyze the practices of exclusive breastfeeding in Mauritius. We develop two sets of quasi-likelihood equations (QLE)to estimate the parameters.

A Comparison on Healing Effects of an Ayurvedic Preparation and Silver Sulfadiazine on Burn Wounds in Albino Rats

To compare Healing Effects of an Ayurvedic Preparation and Silver Sulfadiazine on burn wounds in Albino Rats. Methods: Albino rats– 30 male / female rats weighing between 150-200 g were used in the study. They were individually housed and maintained on normal diet and water ad libitum. Partial thickness burn wounds were inflicted, on overnight-starved animals under pentobarbitone (30mg/kg, i.p.) anaesthesia, by pouring hot molten wax at 80oC into a plastic cylinder of 300 mm2 circular openings placed on the shaven back of the animal. Apart from the drugs under investigation no local/ systemic chemotherapeutic cover will be provided to animals. All the animals were assessed for the percentage of wound contraction, signs of infection, scab formation and histopathological examination. Results: Percentage of wound healing was significantly better in the test ointment group compared to the standard. Signs of infection were observed in more animals in the test ointment group compared to the standard. Scab formation also took place earlier in the test ointment group compared to standard. Epithelial regeneration and healing profile was better in the test ointment compared to the standard. Moreover the test ointment group did not show any raised margins in the wound or blackish discoloration as was observed in silver sulfadiazine group. Conclusion: The burn wound healing effect of the ayurvedic ointment under study is better in comparison to standard therapy of silver sulfadiazine. The problem of infection encountered with the test ointment can be overcome by changing the concentrations and proportions of the ingredients in the test ointment which constitutes the further plan of the study.

Dengue Disease Mapping with Standardized Morbidity Ratio and Poisson-gamma Model: An Analysis of Dengue Disease in Perak, Malaysia

Dengue disease is an infectious vector-borne viral disease that is commonly found in tropical and sub-tropical regions, especially in urban and semi-urban areas, around the world and including Malaysia. There is no currently available vaccine or chemotherapy for the prevention or treatment of dengue disease. Therefore prevention and treatment of the disease depend on vector surveillance and control measures. Disease risk mapping has been recognized as an important tool in the prevention and control strategies for diseases. The choice of statistical model used for relative risk estimation is important as a good model will subsequently produce a good disease risk map. Therefore, the aim of this study is to estimate the relative risk for dengue disease based initially on the most common statistic used in disease mapping called Standardized Morbidity Ratio (SMR) and one of the earliest applications of Bayesian methodology called Poisson-gamma model. This paper begins by providing a review of the SMR method, which we then apply to dengue data of Perak, Malaysia. We then fit an extension of the SMR method, which is the Poisson-gamma model. Both results are displayed and compared using graph, tables and maps. Results of the analysis shows that the latter method gives a better relative risk estimates compared with using the SMR. The Poisson-gamma model has been demonstrated can overcome the problem of SMR when there is no observed dengue cases in certain regions. However, covariate adjustment in this model is difficult and there is no possibility for allowing spatial correlation between risks in adjacent areas. The drawbacks of this model have motivated many researchers to propose other alternative methods for estimating the risk.

Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime

This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.

Design of Nonlinear Observer by Using Augmented Linear System based on Formal Linearization of Polynomial Type

The objective of this study is to propose an observer design for nonlinear systems by using an augmented linear system derived by application of a formal linearization method. A given nonlinear differential equation is linearized by the formal linearization method which is based on Taylor expansion considering up to the higher order terms, and a measurement equation is transformed into an augmented linear one. To this augmented dimensional linear system, a linear estimation theory is applied and a nonlinear observer is derived. As an application of this method, an estimation problem of transient state of electric power systems is studied, and its numerical experiments indicate that this observer design shows remarkable performances for nonlinear systems.

Third Order Current-mode Quadrature Sinusoidal Oscillator with High Output Impedances

This article presents a current-mode quadrature oscillator using differential different current conveyor (DDCC) and voltage differencing transconductance amplifier (VDTA) as active elements. The proposed circuit is realized fro m a non-inverting lossless integrator and an inverting second order low-pass filter. The oscillation condition and oscillation frequency can be electronically/orthogonally controlled via input bias currents. The circuit description is very simple, consisting of merely 1 DDCC, 1 VDTA, 1 grounded resistor and 3 grounded capacitors. Using only grounded elements, the proposed circuit is then suitable for IC architecture. The proposed oscillator has high output impedance which is easy to cascade or dive the external load without the buffer devices. The PSPICE simulation results are depicted, and the given results agree well with the theoretical anticipation. The power consumption is approximately 1.76mW at ±1.25V supply voltages.

Brain MRI Segmentation and Lesions Detection by EM Algorithm

In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.

Relationship between Level of Physical Activity and Exercise Imagery among Klang Valley Citizens

This study investigated the relationship between exercise imagery use and level of physical activity within a wide range of exercisers in Klang valley, Malaysia. One hundred and twenty four respondents (Mage = 28.92, SD = 9.34) completed two sets of questionnaires (Exercise Imagery Inventory and Leisure-Time Exercise Questionnaire) that measure the use of imagery and exercise frequency of participants. From the result obtained, exercise imagery is found to be significantly correlated to level of physical activity. Besides that, variables such as gender, age and ethnicity that may affect the use of imagery and exercise frequency were also being assessed in this study. Among all variables, only ethnicity showed significant difference in level of physical activity (p < 0.05). Findings in this study suggest that further investigation should be done on other variables such as socioeconomic, educational level, and selfefficacy that may affect the imagery use and frequency of physical activity among exercisers.

GIS-based Non-point Sources of Pollution Simulation in Cameron Highlands, Malaysia

Cameron Highlands is a mountainous area subjected to torrential tropical showers. It extracts 5.8 million liters of water per day for drinking supply from its rivers at several intake points. The water quality of rivers in Cameron Highlands, however, has deteriorated significantly due to land clearing for agriculture, excessive usage of pesticides and fertilizers as well as construction activities in rapidly developing urban areas. On the other hand, these pollution sources known as non-point pollution sources are diverse and hard to identify and therefore they are difficult to estimate. Hence, Geographical Information Systems (GIS) was used to provide an extensive approach to evaluate landuse and other mapping characteristics to explain the spatial distribution of non-point sources of contamination in Cameron Highlands. The method to assess pollution sources has been developed by using Cameron Highlands Master Plan (2006-2010) for integrating GIS, databases, as well as pollution loads in the area of study. The results show highest annual runoff is created by forest, 3.56 × 108 m3/yr followed by urban development, 1.46 × 108 m3/yr. Furthermore, urban development causes highest BOD load (1.31 × 106 kgBOD/yr) while agricultural activities and forest contribute the highest annual loads for phosphorus (6.91 × 104 kgP/yr) and nitrogen (2.50 × 105 kgN/yr), respectively. Therefore, best management practices (BMPs) are suggested to be applied to reduce pollution level in the area.

Numerical Study of Cyclic Behavior of Shallow Foundations on Sand Reinforced with Geogrid and Grid-Anchor

When the foundations of structures under cyclic loading with amplitudes less than their permissible load, the concern exists often for the amount of uniform and non-uniform settlement of such structures. Storage tank foundations with numerous filling and discharging and railways ballast course under repeating transportation loads are examples of such conditions. This paper deals with the effects of using the new generation of reinforcements, Grid-Anchor, for the purpose of reducing the permanent settlement of these foundations under the influence of different proportions of the ultimate load. Other items such as the type and the number of reinforcements as well as the number of loading cycles are studied numerically. Numerical models were made using the Plaxis3D Tunnel finite element code. The results show that by using gridanchor and increasing the number of their layers in the same proportion as that of the cyclic load being applied, the amount of permanent settlement decreases up to 42% relative to unreinforced condition depends on the number of reinforcement layers and percent of applied load and the number of loading cycles to reach a constant value of dimensionless settlement decreases up to 20% relative to unreinforced condition.

Ensemble Learning with Decision Tree for Remote Sensing Classification

In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.

Evaluation of a New Method for Detection of Kidney Stone during Laparoscopy Using 3D Conceptual Modeling

Minimally invasive surgery (MIS) is now being widely used as a preferred choice for various types of operations. The need to detect various tactile properties, justifies the key role of tactile sensing that is currently missing in MIS. In this regard, Laparoscopy is one of the methods of minimally invasive surgery that can be used in kidney stone removal surgeries. At this moment, determination of the exact location of stone during laparoscopy is one of the limitations of this method that no scientific solution has been found for so far. Artificial tactile sensing is a new method for obtaining the characteristics of a hard object embedded in a soft tissue. Artificial palpation is an important application of artificial tactile sensing that can be used in different types of surgeries. In this study, a new method for determining the exact location of stone during laparoscopy is presented. In the present study, the effects of stone existence on the surface of kidney were investigated using conceptual 3D model of kidney containing a simulated stone. Having imitated palpation and modeled it conceptually, indications of stone existence that appear on the surface of kidney were determined. A number of different cases were created and solved by the software and using stress distribution contours and stress graphs, it is illustrated that the created stress patterns on the surface of kidney show not only the existence of stone inside, but also its exact location. So three-dimensional analysis leads to a novel method of predicting the exact location of stone and can be directly applied to the incorporation of tactile sensing in artificial palpation, helping surgeons in non-invasive procedures.

Mobile to Server Face Recognition: A System Overview

This paper presents a system overview of Mobile to Server Face Recognition, which is a face recognition application developed specifically for mobile phones. Images taken from mobile phone cameras lack of quality due to the low resolution of the cameras. Thus, a prototype is developed to experiment the chosen method. However, this paper shows a result of system backbone without the face recognition functionality. The result demonstrated in this paper indicates that the interaction between mobile phones and server is successfully working. The result shown before the database is completely ready. The system testing is currently going on using real images and a mock-up database to test the functionality of the face recognition algorithm used in this system. An overview of the whole system including screenshots and system flow-chart are presented in this paper. This paper also presents the inspiration or motivation and the justification in developing this system.