New Multisensor Data Fusion Method Based on Probabilistic Grids Representation

A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.

Train the Trainer: The Bricks in the Learning Community Scaffold of Professional Development

Professional development is the focus of this study. It reports on questionnaire data that examined the perceived effectiveness of the Train the Trainer model of technology professional development for elementary teachers. Eighty-three selected teachers called Information Technology Coaches received four half-day and one after-school in-service sessions. Subsequently, coaches shared the information and skills acquired during training with colleagues. Results indicated that participants felt comfortable as Information Technology Coaches and felt well prepared because of their technological professional development. Overall, participants perceived the Train the Trainer model to be effective. The outcomes of this study suggest that the use of the Train the Trainer model, a known professional development model, can be an integral and interdependent component of the newer more comprehensive learning community professional development model.

A Distributed Topology Control Algorithm to Conserve Energy in Heterogeneous Wireless Mesh Networks

A considerable amount of energy is consumed during transmission and reception of messages in a wireless mesh network (WMN). Reducing per-node transmission power would greatly increase the network lifetime via power conservation in addition to increasing the network capacity via better spatial bandwidth reuse. In this work, the problem of topology control in a hybrid WMN of heterogeneous wireless devices with varying maximum transmission ranges is considered. A localized distributed topology control algorithm is presented which calculates the optimal transmission power so that (1) network connectivity is maintained (2) node transmission power is reduced to cover only the nearest neighbours (3) networks lifetime is extended. Simulations and analysis of results are carried out in the NS-2 environment to demonstrate the correctness and effectiveness of the proposed algorithm.

Takagi-Sugeno Fuzzy Controller for a 3-DOF Stabilized Platform with Adaptive Decoupling Scheme

This paper presents a fuzzy control system for a three degree of freedom (3-DOF) stabilized platform with explicit decoupling scheme. The system under consideration is a system with strong interactions between three channels. By using the concept of decentralized control, a control structure is developed that is composed of three control loops, each of which is associated with a single-variable fuzzy controller and a decoupling unit. Takagi-Sugeno (TS) fuzzy control algorithm is used to implement the fuzzy controller. The decoupling units design is based on the adaptive theory reasoning. Simulation tests were established using Simulink of Matlab. The obtained results have demonstrated the feasibility and effectiveness of the proposed approach. Simulation results are represented in this paper.

Evaluating the Effectiveness of Memory Overcommit Techniques on KVM-based Hosting Platform

Determining how many virtual machines a Linux host could run can be a challenge. One of tough missions is to find the balance among performance, density and usability. Now KVM hypervisor has become the most popular open source full virtualization solution. It supports several ways of running guests with more memory than host really has. Due to large differences between minimum and maximum guest memory requirements, this paper presents initial results on same-page merging, ballooning and live migration techniques that aims at optimum memory usage on KVM-based cloud platform. Given the design of initial experiments, the results data is worth reference for system administrators. The results from these experiments concluded that each method offers different reliability tradeoff.

Sensorless Control of a Six-Phase Induction Motors Drive Using FOC in Stator Flux Reference Frame

In this paper, a direct torque control - space vector modulation (DTC-SVM) scheme is presented for a six-phase speed and voltage sensorless induction motor (IM) drive. The decoupled torque and stator flux control is achieved based on IM stator flux field orientation. The rotor speed is detected by on-line estimating of the rotor angular slip speed and stator vector flux speed. In addition, a simple method is introduced to estimate the stator resistance. Moreover in this control scheme the voltage sensors are eliminated and actual motor phase voltages are approximated by using PWM inverter switching times and the dc link voltage. Finally, some simulation and experimental results are presented to verify the effectiveness and capability of the proposed control scheme.

Online Collaboration Learning: A Way to Enhance Students' Achievement at Kingdom of Bahrain

The increasing recognition of the need for education to be closely aligned with team playing, project based learning and problem solving approaches has increase the interest in collaborative learning among university and college instructors. Using online collaboration learning in learning can enhance the outcome and achievement of students as well as improve their communication, critical thinking and personnel skills. The current research aims at examining the effect of OCL on the student's achievement at Kingdom of Bahrain. Numbers of objectives were set to achieve the aim of the research include: investigating the current situation regarding the collaborative learning and OCL at the Kingdom of Bahrain by identifying the advantages and effectiveness of OCL as a learning tool over traditional learning, examining the factors that affect OCL as well as examining the impact of OCL on the student's achievement. To achieve these objectives, quantitative method was adopted. Two hundred and thirty one questionnaires were distributed to students in different local and private universities at Kingdom of Bahrain. The findings of the research show that most of the students prefer to use FTFCL in learning and that OCL is already adopted in some universities especially in University of Bahrain. Moreover, the most factors affecting the adopted OCL are perceived readiness, and guidance and support.

Study of the Effectiveness of Outrigger System for High-Rise Composite Buildings for Cyclonic Region

The demands of taller structures are becoming imperative almost everywhere in the world in addition to the challenges of material and labor cost, project time line etc. This paper conducted a study keeping in view the challenging nature of high-rise construction with no generic rules for deflection minimizations and frequency control. The effects of cyclonic wind and provision of outriggers on 28-storey, 42-storey and 57-storey are examined in this paper and certain conclusions are made which would pave way for researchers to conduct further study in this particular area of civil engineering. The results show that plan dimensions have vital impacts on structural heights. Increase of height while keeping the plan dimensions same, leads to the reduction in the lateral rigidity. To achieve required stiffness increase of bracings sizes as well as introduction of additional lateral resisting system such as belt truss and outriggers is required.

A Comparative Performance Evaluation Model of Mobile Agent Versus Remote Method Invocation for Information Retrieval

The development of distributed systems has been affected by the need to accommodate an increasing degree of flexibility, adaptability, and autonomy. The Mobile Agent technology is emerging as an alternative to build a smart generation of highly distributed systems. In this work, we investigate the performance aspect of agent-based technologies for information retrieval. We present a comparative performance evaluation model of Mobile Agents versus Remote Method Invocation by means of an analytical approach. We demonstrate the effectiveness of mobile agents for dynamic code deployment and remote data processing by reducing total latency and at the same time producing minimum network traffic. We argue that exploiting agent-based technologies significantly enhances the performance of distributed systems in the domain of information retrieval.

Efficient Program Slicing Algorithms for Measuring Functional Cohesion and Parallelism

Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. In this paper, algorithms are introduced to compute all backward and forward static slices of a computer program by traversing the program representation graph once. The program representation graph used in this paper is called Program Dependence Graph (PDG). We have conducted an experimental comparison study using 25 software modules to show the effectiveness of the introduced algorithm for computing all backward static slices over single-point slicing approaches in computing the parallelism and functional cohesion of program modules. The effectiveness of the algorithm is measured in terms of time execution and number of traversed PDG edges. The comparison study results indicate that using the introduced algorithm considerably saves the slicing time and effort required to measure module parallelism and functional cohesion.

Effects of a Recreational Workout Program on Task-Analyzed Exercise Performance of Adults with Severe Cognitive Impairments

The purpose of this study was to investigate the effectiveness of a recreational workout program for adults with disabilities over two semesters. This investigation was an action study conducted in a naturalistic setting. Participants included equal numbers of adults with severe cognitive impairments (n = 35) and adults without disabilities (n = 35). Adults with disabilities severe cognitive impairments were trained 6 self-initiated workout activities over two semesters by adults without disabilities. The numbers of task-analyzed steps of each activity performed correctly by each participant at the first and last weeks of each semester were used for data analysis. Results of the paired t-tests indicate that across two semesters, significant differences between the first and last weeks were found on 4 out of the 6 task-analyzed workout activities at a statistical level of significance p < .05. The recreational workout program developed in this study was effective.

Categorical Clustering By Converting Associated Information

Lacking an inherent “natural" dissimilarity measure between objects in categorical dataset presents special difficulties in clustering analysis. However, each categorical attributes from a given dataset provides natural probability and information in the sense of Shannon. In this paper, we proposed a novel method which heuristically converts categorical attributes to numerical values by exploiting such associated information. We conduct an experimental study with real-life categorical dataset. The experiment demonstrates the effectiveness of our approach.

Application of Magnetic Circuit and Multiple-Coils Array in Induction Heating for Improving Localized Hyperthermia

Aiming the application of localized hyperthermia, a magnetic induction system with new approaches is proposed. The techniques in this system for improving the effectiveness of localized hyperthermia are that using magnetic circuit and the multiple-coil array instead of a giant coil for generating magnetic field. Specially, amorphous metal is adopted as the material of magnetic circuit. Detail design parameters of hardware are well described. Simulation tool is employed for this work and experiment result is reported as well.

Numerical Optimization Design of PEM Fuel Cell Performance Applying the Taguchi Method

The purpose of this paper is applied Taguchi method on the optimization for PEMFC performance, and a representative Computational Fluid Dynamics (CFD) model is selectively performed for statistical analysis. The studied factors in this paper are pressure of fuel cell, operating temperature, the relative humidity of anode and cathode, porosity of gas diffusion electrode (GDE) and conductivity of GDE. The optimal combination for maximum power density is gained by using a three-level statistical method. The results confirmed that the robustness of the optimum design parameters influencing the performance of fuel cell are founded by pressure of fuel cell, 3atm; operating temperature, 353K; the relative humidity of anode, 50%; conductivity of GDE, 1000 S/m, but the relative humidity of cathode and porosity of GDE are pooled as error due to a small sum of squares. The present simulation results give designers the ideas ratify the effectiveness of the proposed robust design methodology for the performance of fuel cell.

Multichannel Image Mosaicing of Stem Cells

Image mosaicing techniques are usually employed to offer researchers a wider field of view of microscopic image of biological samples. a mosaic is commonly achieved using automated microscopes and often with one “color" channel, whether it refers to natural or fluorescent analysis. In this work we present a method to achieve three subsequent mosaics of the same part of a stem cell culture analyzed in phase contrast and in fluorescence, with a common non-automated inverted microscope. The mosaics obtained are then merged together to mark, in the original contrast phase images, nuclei and cytoplasm of the cells referring to a mosaic of the culture, rather than to single images. The experiments carried out prove the effectiveness of our approach with cultures of cells stained with calcein (green/cytoplasm and nuclei) and hoechst (blue/nuclei) probes.

Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay

In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.

Discovery of Sequential Patterns Based On Constraint Patterns

This paper proposes a method that discovers sequential patterns corresponding to user-s interests from sequential data. This method expresses the interests as constraint patterns. The constraint patterns can define relationships among attributes of the items composing the data. The method recursively decomposes the constraint patterns into constraint subpatterns. The method evaluates the constraint subpatterns in order to efficiently discover sequential patterns satisfying the constraint patterns. Also, this paper applies the method to the sequential data composed of stock price indexes and verifies its effectiveness through comparing it with a method without using the constraint patterns.

Comparative Analysis and Evaluation of Software Vulnerabilities Testing Techniques

Software and applications are subjected to serious and damaging security threats, these threats are increasing as a result of increased number of potential vulnerabilities. Security testing is an indispensable process to validate software security requirements and to identify security related vulnerabilities. In this paper we analyze and compare different available vulnerabilities testing techniques based on a pre defined criteria using analytical hierarchy process (AHP). We have selected five testing techniques which includes Source code analysis, Fault code injection, Robustness, Stress and Penetration testing techniques. These testing techniques have been evaluated against five criteria which include cost, thoroughness, Ease of use, effectiveness and efficiency. The outcome of the study is helpful for researchers, testers and developers to understand effectiveness of each technique in its respective domain. Also the study helps to compare the inner working of testing techniques against a selected criterion to achieve optimum testing results.

The Influence of Institutional Shareholder Activism as a Corporate Governance Monitoring Mechanism in Malaysia

Not many studies have been undertaken on shareholder activism in emerging economies, including Malaysia. Shareholder activism in emerging economies is on the rise. This paper seeks to comprehend the elements of this activism that are unique to Malaysia, specifically with respect to how the agency problem is controlled through shareholder activism in improving corporate governance practices within target companies. Through shareholder activism, shareholders make contact with a target company to voice their dissatisfaction, suggestions, or recommendations. This paper utilises agency theory to explain institutional shareholder activism. This theory has been extensively used within literature on corporate governance with regards to shareholder activism. The effectiveness of shareholder activism in improving corporate governance will be examined as well. This research provides a further understanding of shareholder activism in emerging economies, such as Malaysia; this research also has the potential to enhance shareholder activism and corporate governance practices in general.

Measuring the Performance of the Accident Reductions: Evidence from Izmir City

Traffic enforcement units (the Police) are partly responsible for the severity and frequency of the traffic accidents via the effectiveness of their safety measures. The Police claims that the reductions in accidents and their severities occur largely by their timely interventions at the black spots, through traffic management or temporary changes in the road design (guiding, reducing speeds and eliminating sight obstructions, etc.). Yet, some other external factors than the Police measures may intervene into which such claims require a statistical confirmation. In order to test the net impact of the Police contribution in the reduction of the number of crashes, Chi square test was applied for 25 spots (streets and intersections) and an average evaluation was achieved for general conclusion in the case study of Izmir city. Separately, the net impact of economic crisis in the reduction of crashes is assessed by the trend analysis for the case of the economic crisis with the probable reduction effects on the trip generation or modal choice. Finally, it was proven that the Police measures were effective to some degree as they claimed, though the economic crisis might have only negligible contribution to the reductions in the same period observed.