Modelling Sudoku Puzzles as Block-world Problems

Sudoku is a kind of logic puzzles. Each puzzle consists of a board, which is a 9×9 cells, divided into nine 3×3 subblocks and a set of numbers from 1 to 9. The aim of this puzzle is to fill in every cell of the board with a number from 1 to 9 such that in every row, every column, and every subblock contains each number exactly one. Sudoku puzzles belong to combinatorial problem (NP complete). Sudoku puzzles can be solved by using a variety of techniques/algorithms such as genetic algorithms, heuristics, integer programming, and so on. In this paper, we propose a new approach for solving Sudoku which is by modelling them as block-world problems. In block-world problems, there are a number of boxes on the table with a particular order or arrangement. The objective of this problem is to change this arrangement into the targeted arrangement with the help of two types of robots. In this paper, we present three models for Sudoku. We modellized Sudoku as parameterized multi-agent systems. A parameterized multi-agent system is a multi-agent system which consists of several uniform/similar agents and the number of the agents in the system is stated as the parameter of this system. We use Temporal Logic of Actions (TLA) for formalizing our models.

A 24-Bit, 8.1-MS/s D/A Converter for Audio Baseband Channel Applications

This paper study the high-level modelling and design of delta-sigma (ΔΣ) noise shapers for audio Digital-to-Analog Converter (DAC) so as to eliminate the in-band Signal-to-Noise- Ratio (SNR) degradation that accompany one channel mismatch in audio signal. The converter combines a cascaded digital signal interpolation, a noise-shaping single loop delta-sigma modulator with a 5-bit quantizer resolution in the final stage. To reduce sensitivity of Digital-to-Analog Converter (DAC) nonlinearities of the last stage, a high pass second order Data Weighted Averaging (R2DWA) is introduced. This paper presents a MATLAB description modelling approach of the proposed DAC architecture with low distortion and swing suppression integrator designs. The ΔΣ Modulator design can be configured as a 3rd-order and allows 24-bit PCM at sampling rate of 64 kHz for Digital Video Disc (DVD) audio application. The modeling approach provides 139.38 dB of dynamic range for a 32 kHz signal band at -1.6 dBFS input signal level.

Optimal Switching Strategies for Tracking of Currents of Voltage Source Converters

This paper proposes a new optimal feedback controller for voltage source converters VSC's, for current regulated voltage source converters, which allows compensate the harmonics of current produced by nonlinear loads and load reactive power. The aim of the present paper is to describe a novel switching signal generation technique called optimal controller which guarantees that the injected currents follow the reference currents determined by the compensation strategy, with the smallest possible tracking error and fixed switching frequency. It is compared with well-known hysteresis current controller HCC. The validity of presented method and its comparison with HCC is studied through simulation results.

Performance Analysis of a Discrete-time GeoX/G/1 Queue with Single Working Vacation

This paper treats a discrete-time batch arrival queue with single working vacation. The main purpose of this paper is to present a performance analysis of this system by using the supplementary variable technique. For this purpose, we first analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. Next, we present the stationary distributions of the system length as well as some performance measures at random epochs by using the supplementary variable method. Thirdly, still based on the supplementary variable method we give the probability generating function (PGF) of the number of customers at the beginning of a busy period and give a stochastic decomposition formulae for the PGF of the stationary system length at the departure epochs. Additionally, we investigate the relation between our discretetime system and its continuous counterpart. Finally, some numerical examples show the influence of the parameters on some crucial performance characteristics of the system.

Simulation of Agri-Food Supply Chains

Supply chain management has become more challenging with the emerging trend of globalization and sustainability. Lately, research related to perishable products supply chains, in particular agricultural food products, has emerged. This is attributed to the additional complexity of managing this type of supply chains with the recently increased concern of public health, food quality, food safety, demand and price variability, and the limited lifetime of these products. Inventory management for agrifood supply chains is of vital importance due to the product perishability and customers- strive for quality. This paper concentrates on developing a simulation model of a real life case study of a two echelon production-distribution system for agri-food products. The objective is to improve a set of performance measures by developing a simulation model that helps in evaluating and analysing the performance of these supply chains. Simulation results showed that it can help in improving overall system performance.

Context-Aware Querying in Multimedia Databases – A Futuristic Approach

Efficient retrieval of multimedia objects has gained enormous focus in recent years. A number of techniques have been suggested for retrieval of textual information; however, relatively little has been suggested for efficient retrieval of multimedia objects. In this paper we have proposed a generic architecture for contextaware retrieval of multimedia objects. The proposed framework combines the well-known approaches of text-based retrieval and context-aware retrieval to formulate architecture for accurate retrieval of multimedia data.

Numerical Analysis of Plate Heat Exchanger Performance in Co-Current Fluid Flow Configuration

For many industrial applications plate heat exchangers are demonstrating a large superiority over the other types of heat exchangers. The efficiency of such a device depends on numerous factors the effect of which needs to be analysed and accurately evaluated. In this paper we present a theoretical analysis of a cocurrent plate heat exchanger and the results of its numerical simulation. Knowing the hot and the cold fluid streams inlet temperatures, the respective heat capacities mCp and the value of the overall heat transfer coefficient, a 1-D mathematical model based on the steady flow energy balance for a differential length of the device is developed resulting in a set of N first order differential equations with boundary conditions where N is the number of channels.For specific heat exchanger geometry and operational parameters, the problem is numerically solved using the shooting method. The simulation allows the prediction of the temperature map in the heat exchanger and hence, the evaluation of its performances. A parametric analysis is performed to evaluate the influence of the R-parameter on the e-NTU values. For practical purposes effectiveness-NTU graphs are elaborated for specific heat exchanger geometry and different operating conditions.

A Secure Blind Signature Scheme for Computation Limited Users

This manuscript presents a fast blind signature scheme with extremely low computation for users. Only several modular additions and multiplications are required for a user to obtain and verify a signature in the proposed scheme. Comparing with the existing ones in the literature, the scheme greatly reduces the computations for users.

Characteristics of Cascade and C3MR Cycle on Natural Gas Liquefaction Process

In this paper, several different types of natural gas liquefaction cycle. First, two processes are a cascade process with two staged compression were designed and simulated. These include Inter-cooler which is consisted to Propane, Ethylene and Methane cycle, and also, liquid-gas heat exchanger is applied to between of methane and ethylene cycles (process2) and between of ethylene and propane (process2). Also, these cycles are compared with two staged cascade process using only a Inter-cooler (process1). The COP of process2 and process3 showed about 13.99% and 6.95% higher than process1, respectively. Also, the yield efficiency of LNG improved comparing with process1 by 13.99% lower specific power. Additionally, C3MR process are simulated and compared with Process 2.

Application of the Central-Difference with Half- Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-Differential Equations

The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The formulation and implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half- Sweep Gauss-Seidel (HSGS) methods are also presented. The HSGS method has been shown to rapid compared to the FSGS methods. Some numerical tests were illustrated to show that the HSGS method is superior to the FSGS method.

Plasmodium Vivax Malaria Transmission in a Network of Villages

Malaria is a serious, acute and chronic relapsing infection to humans. It is characterized by periodic attacks of chills, fever, nausea, vomiting, back pain, increased sweating anemia, splenomegaly (enlargement of the spleen) and often-fatal complications.The malaria disease is caused by the multiplication of protozoa parasite of the genus Plasmodium. Malaria in humans is due to 4 types of malaria parasites such that Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale. P.vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax malaria can experience relapses of the disease. Between the relapses, the malaria parasite will remain dormant in the liver of the patient, leading to the patient being classified as being in the dormant class. A mathematical model for the transmission of P. vivax is developed in which the human population is divided into four classes, the susceptible, the infected, the dormant and the recovered. In this paper, we formulate the dynamical model of P. vivax malaria to see the distribution of this disease at the district level.

Shear Strengthening of RC T Beam using CFRP Laminate: A Review

This paper presents the Literature Review of carbon fiber reinforced polymer (CFRP) strips to reinforced concrete (RC) as a strengthening solution for T-beams. Although a great deal of research has been carried out on Rectangular beams strengthened with Fibre-Reinforced Polymer composites (FRP), Fiber reinforced polymer (FRP) composites have been increasingly studied for their application in the flexural or shear strengthening of reinforced concrete (RC) members. A detailed discussion of the shearstrengthening repair with FRP is undertaken. This paper will be limited to research of CFRP material externally bonded to the tensile face of concrete beams. In particular, research studying the effect of externally applied CFRP materials on the shear performance of reinforced concrete beams will be reported.

Performance Analysis of CATR Reflector with Super Hybrid Modulated Segmented Exponential Serrated Edges

This paper presented a theoretical and numerical investigation of the Compact Antenna Test Range (CATR) equipped with Super Hybrid Modulated Segmented Exponential Serrations (SHMSES). The investigation was based on diffraction theory and, more specifically, the Fresnel diffraction formulation. The CATR provides uniform illumination within the Fresnel region to test antenna. Application of serrated edges has been shown to be a good method to control diffraction at the edges of the reflectors. However, in order to get some insight into the positive effect of serrated edges a less rigorous analysis technique known as Physical Optics (PO) may be used. Ripple free and enhanced quiet zone width are observed for specific values of width and height modulation factors per serrations. The performance of SHMSE serrated reflector is evaluated in order to observe the effects of edge diffraction on the test zone fields.

The Study of the Discrete Risk Model with Random Income

In this paper, we extend the compound binomial model to the case where the premium income process, based on a binomial process, is no longer a linear function. First, a mathematically recursive formula is derived for non ruin probability, and then, we examine the expected discounted penalty function, satisfy a defect renewal equation. Third, the asymptotic estimate for the expected discounted penalty function is then given. Finally, we give two examples of ruin quantities to illustrate applications of the recursive formula and the asymptotic estimate for penalty function.

A Novel Optimal Setting for Directional over Current Relay Coordination using Particle Swarm Optimization

Over Current Relays (OCRs) and Directional Over Current Relays (DOCRs) are widely used for the radial protection and ring sub transmission protection systems and for distribution systems. All previous work formulates the DOCR coordination problem either as a Non-Linear Programming (NLP) for TDS and Ip or as a Linear Programming (LP) for TDS using recently a social behavior (Particle Swarm Optimization techniques) introduced to the work. In this paper, a Modified Particle Swarm Optimization (MPSO) technique is discussed for the optimal settings of DOCRs in power systems as a Non-Linear Programming problem for finding Ip values of the relays and for finding the TDS setting as a linear programming problem. The calculation of the Time Dial Setting (TDS) and the pickup current (Ip) setting of the relays is the core of the coordination study. PSO technique is considered as realistic and powerful solution schemes to obtain the global or quasi global optimum in optimization problem.

Newton-Raphson State Estimation Solution Employing Systematically Constructed Jacobian Matrix

Newton-Raphson State Estimation method using bus admittance matrix remains as an efficient and most popular method to estimate the state variables. Elements of Jacobian matrix are computed from standard expressions which lack physical significance. In this paper, elements of the state estimation Jacobian matrix are obtained considering the power flow measurements in the network elements. These elements are processed one-by-one and the Jacobian matrix H is updated suitably in a simple manner. The constructed Jacobian matrix H is integrated with Weight Least Square method to estimate the state variables. The suggested procedure is successfully tested on IEEE standard systems.

Modeling of Single-Particle Impact in Abrasive Water Jet Machining

This work presents a study on the abrasive water jet (AWJ) machining. An explicit finite element analysis (FEA) of single abrasive particle impact on stainless steel 1.4304 (AISI 304) is conducted. The abrasive water jet machining is modeled by FEA software ABAQUS/CAE. Shapes of craters in FEM simulation results were used and compared with the previous experimental and FEM works by means of crater sphericity. The influence of impact angle and particle velocity was observed. Adaptive mesh domain is used to model the impact zone. Results are in good agreement with those obtained from the experimental and FEM simulation. The crater-s depth is also obtained for different impact angle and abrasive particle velocities.

Novel Adaptive Channel Equalization Algorithms by Statistical Sampling

In this paper, novel statistical sampling based equalization techniques and CNN based detection are proposed to increase the spectral efficiency of multiuser communication systems over fading channels. Multiuser communication combined with selective fading can result in interferences which severely deteriorate the quality of service in wireless data transmission (e.g. CDMA in mobile communication). The paper introduces new equalization methods to combat interferences by minimizing the Bit Error Rate (BER) as a function of the equalizer coefficients. This provides higher performance than the traditional Minimum Mean Square Error equalization. Since the calculation of BER as a function of the equalizer coefficients is of exponential complexity, statistical sampling methods are proposed to approximate the gradient which yields fast equalization and superior performance to the traditional algorithms. Efficient estimation of the gradient is achieved by using stratified sampling and the Li-Silvester bounds. A simple mechanism is derived to identify the dominant samples in real-time, for the sake of efficient estimation. The equalizer weights are adapted recursively by minimizing the estimated BER. The near-optimal performance of the new algorithms is also demonstrated by extensive simulations. The paper has also developed a (Cellular Neural Network) CNN based approach to detection. In this case fast quadratic optimization has been carried out by t, whereas the task of equalizer is to ensure the required template structure (sparseness) for the CNN. The performance of the method has also been analyzed by simulations.

Multimachine Power System Stabilizers Design Using PSO Algorithm

In this paper, multiobjective design of multi-machine Power System Stabilizers (PSSs) using Particle Swarm Optimization (PSO) is presented. The stabilizers are tuned to simultaneously shift the lightly damped and undamped electro-mechanical modes of all machines to a prescribed zone in the s-plane. A multiobjective problem is formulated to optimize a composite set of objective functions comprising the damping factor, and the damping ratio of the lightly damped electromechanical modes. The PSSs parameters tuning problem is converted to an optimization problem which is solved by PSO with the eigenvalue-based multiobjective function. The proposed PSO based PSSs is tested on a multimachine power system under different operating conditions and disturbances through eigenvalue analysis and some performance indices to illustrate its robust performance.