Directional Drilling Optimization by Non-Rotating Stabilizer

The Non-Rotating Adjustable Stabilizer / Directional Solution (NAS/DS) is the imitation of a mechanical process or an object by a directional drilling operation that causes a respond mathematically and graphically to data and decision to choose the best conditions compared to the previous mode. The NAS/DS Auto Guide rotary steerable tool is undergoing final field trials. The point-the-bit tool can use any bit, work at any rotating speed, work with any MWD/LWD system, and there is no pressure drop through the tool. It is a fully closed-loop system that automatically maintains a specified curvature rate. The Non–Rotating Adjustable stabilizer (NAS) can be controls curvature rate by exactly positioning and run with the optimum bit, use the most effective weight (WOB) and rotary speed (RPM) and apply all of the available hydraulic energy to the bit. The directional simulator allowed to specify the size of the curvature rate performance errors of the NAS tool and the magnitude of the random errors in the survey measurements called the Directional Solution (DS). The combination of these technologies (NAS/DS) will provide smoother bore holes, reduced drilling time, reduced drilling cost and incredible targeting precision. This simulator controls curvature rate by precisely adjusting the radial extension of stabilizer blades on a near bit Non-Rotating Stabilizer and control process corrects for the secondary effects caused by formation characteristics, bit and tool wear, and manufacturing tolerances.

Tool for Helping Rural Woman Giving Birth

Giving birth is a natural process and most women have to go through it. Gynecologist or Midwife usually uses the leg holder to position the cervix in the stitching process. In some part of rural areas in Indonesia, the labor process normally being done at homes by calling in a midwife or gynecologist. The facilities for this kind of labor process is not yet sufficient, as the use of leg holder supposedly on the obstetric bed. The reality is that it is impossible to bring in the obstetric bed to the patient-s house at the time they call for giving birth or the time when the stitching of the cervix need to be done. This research is redesigning the leg holder through Biomechanics and ergonomic approaches to obtain the optimal design which is suitable to the user of a developing country such as Indonesia.

Economic Evaluations Using Genetic Algorithms to Determine the Territorial Impact Caused by High Speed Railways

The evolution of technology and construction techniques has enabled the upgrading of transport networks. In particular, the high-speed rail networks allow convoys to peak at above 300 km/h. These structures, however, often significantly impact the surrounding environment. Among the effects of greater importance are the ones provoked by the soundwave connected to train transit. The wave propagation affects the quality of life in areas surrounding the tracks, often for several hundred metres. There are substantial damages to properties (buildings and land), in terms of market depreciation. The present study, integrating expertise in acoustics, computering and evaluation fields, outlines a useful model to select project paths so as to minimize the noise impact and reduce the causes of possible litigation. It also facilitates the rational selection of initiatives to contain the environmental damage to the already existing railway tracks. The research is developed with reference to the Italian regulatory framework (usually more stringent than European and international standards) and refers to a case study concerning the high speed network in Italy.

The Diameter of an Interval Graph is Twice of its Radius

In an interval graph G = (V,E) the distance between two vertices u, v is de£ned as the smallest number of edges in a path joining u and v. The eccentricity of a vertex v is the maximum among distances from all other vertices of V . The diameter (δ) and radius (ρ) of the graph G is respectively the maximum and minimum among all the eccentricities of G. The center of the graph G is the set C(G) of vertices with eccentricity ρ. In this context our aim is to establish the relation ρ = δ 2  for an interval graph and to determine the center of it.

Reentry Trajectory Optimization Based on Differential Evolution

Reentry trajectory optimization is a multi-constraints optimal control problem which is hard to solve. To tackle it, we proposed a new algorithm named CDEN(Constrained Differential Evolution Newton-Raphson Algorithm) based on Differential Evolution( DE) and Newton-Raphson.We transform the infinite dimensional optimal control problem to parameter optimization which is finite dimensional by discretize control parameter. In order to simplify the problem, we figure out the control parameter-s scope by process constraints. To handle constraints, we proposed a parameterless constraints handle process. Through comprehensive analyze the problem, we use a new algorithm integrated by DE and Newton-Raphson to solve it. It is validated by a reentry vehicle X-33, simulation results indicated that the algorithm is effective and robust.

A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process

It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.

Comparison of Classical and Ultrasound-Assisted Extractions of Hyphaene thebaica Fruit and Evaluation of Its Extract as Antibacterial Activity in Reducing Severity of Erwinia carotovora

Erwinia carotovora var. carotovora is the main cause of soft rot in potatoes. Hyphaene thebaica was studied for biocontrol of E. carotovora which inhibited growth of E. carotovora on solid medium, a comparative study of classical and ultrasound-assisted extractions of Hyphaene thebaica fruit. The use of ultrasound decreased significant the total time of treatment and increase the total amount of crude extract. The crude extract was subjected to determine the in vitro, by a bioassay technique revealed that the treatment of paper disks with ultrasound extraction of Hyphaene thebaica reduced the growth of pathogen and produced inhibition zones up to 38mm in diameter. The antioxidant activity of ultrasound-ethanolic extract of Doum fruits (Hyphaene thebaica) was determined. Data obtained showed that the extract contains the secondary metabolites such as Tannins, Saponin, Flavonoids, Phenols, Steroids, Terpenoids, Glycosides and Alkaloids.

Cost Based Warranty Optimisation Using Genetic Algorithm

Warranty is a powerful marketing tool for the manufacturer and a good protection for both the manufacturer and the customer. However, warranty always involves additional costs to the manufacturer, which depend on product reliability characteristics and warranty parameters. This paper presents an approach to optimisation of warranty parameters for known product failure distribution to reduce the warranty costs to the manufacturer while retaining the promotional function of the warranty. Combination free replacement and pro-rata warranty policy is chosen as a model and the length of free replacement period and pro-rata policy period are varied, as well as the coefficients that define the pro-rata cost function. Multiparametric warranty optimisation is done by using genetic algorithm. Obtained results are guideline for the manufacturer to choose the warranty policy that minimises the costs and maximises the profit.

The Current Awareness of Just-In-Time Techniques within the Libyan Textile Private Industry: A Case Study

Almost all Libyan industries (both private and public) have struggled with many difficulties during the past three decades due to many problems. These problems have created a strongly negative impact on the productivity and utilization of many companies within Libya. This paper studies the current awareness and implementation levels of Just-In-Time (JIT) within the Libyan Textile private industry. A survey has been applied in this study using an intensive detailed questionnaire. Based on the analysis of the survey responses, the results show that the management body within the surveyed companies has a modest strategy towards most of the areas that are considered as being very crucial in any successful implementation of JIT. The results also show a variation within the implementation levels of the JIT elements as these varies between Low and Acceptable levels. The paper has also identified limitations within the investigated areas within this industry, and has pointed to areas where senior managers within the Libyan textile industry should take immediate actions in order to achieve effective implementation of JIT within their companies.

A New Method in Detection of Ceramic Tiles Color Defects Using Genetic C-Means Algorithm

In this paper an algorithm is used to detect the color defects of ceramic tiles. First the image of a normal tile is clustered using GCMA; Genetic C-means Clustering Algorithm; those results in best cluster centers. C-means is a common clustering algorithm which optimizes an objective function, based on a measure between data points and the cluster centers in the data space. Here the objective function describes the mean square error. After finding the best centers, each pixel of the image is assigned to the cluster with closest cluster center. Then, the maximum errors of clusters are computed. For each cluster, max error is the maximum distance between its center and all the pixels which belong to it. After computing errors all the pixels of defected tile image are clustered based on the centers obtained from normal tile image in previous stage. Pixels which their distance from their cluster center is more than the maximum error of that cluster are considered as defected pixels.

Chua’s Circuit Regulation Using a Nonlinear Adaptive Feedback Technique

Chua’s circuit is one of the most important electronic devices that are used for Chaos and Bifurcation studies. A central role of secure communication is devoted to it. Since the adaptive control is used vastly in the linear systems control, here we introduce a new trend of application of adaptive method in the chaos controlling field. In this paper, we try to derive a new adaptive control scheme for Chua’s circuit controlling because control of chaos is often very important in practical operations. The novelty of this approach is for sake of its robustness against the external perturbations which is simulated as an additive noise in all measured states and can be generalized to other chaotic systems. Our approach is based on Lyapunov analysis and the adaptation law is considered for the feedback gain. Because of this, we have named it NAFT (Nonlinear Adaptive Feedback Technique). At last, simulations show the capability of the presented technique for Chua’s circuit.

A New Time Dependent, High Temperature Analytical Model for the Single-electron Box in Digital Applications

Several models have been introduced so far for single electron box, SEB, which all of them were restricted to DC response and or low temperature limit. In this paper we introduce a new time dependent, high temperature analytical model for SEB for the first time. DC behavior of the introduced model will be verified against SIMON software and its time behavior will be verified against a newly published paper regarding step response of SEB.

Water Consumption on Spanish Households

Water has always been a very precious resource. However, many of us do not fully understand or appreciate water-s value until there will be a shortage. We intended to analyze the water consumption into the Spanish households to understand their behavior according to the habitants of the house. In this research was carried out a survey of users, asking for water consumption of their households. The aim of this paper is get a reference value of consumers in Spanish households to help to check their bill and realize if their consumption is excessive, including some tips to decrease it.

A New Biometric Human Identification Based On Fusion Fingerprints and Finger Veins Using monoLBP Descriptor

Single biometric modality recognition is not able to meet the high performance supplies in most cases with its application become more and more broadly. Multimodal biometrics identification represents an emerging trend recently. This paper investigates a novel algorithm based on fusion of both fingerprint and fingervein biometrics. For both biometric recognition, we employ the Monogenic Local Binary Pattern (MonoLBP). This operator integrate the orginal LBP (Local Binary Pattern ) with both other rotation invariant measures: local phase and local surface type. Experimental results confirm that a weighted sum based proposed fusion achieves excellent identification performances opposite unimodal biometric systems. The AUC of proposed approach based on combining the two modalities has very close to unity (0.93).

Semantic Web Technologies in e - Government

e-Government is already in its second decade. Prerequisite for further development and adaptation to new realities is the optimal management of administrative information and knowledge production by those involved, i.e. the public sector, citizens and businesses. Nowadays, the amount of information displayed or distributed on the Internet has reached enormous dimensions, resulting in serious difficulties when extracting and managing knowledge. The semantic web is expected to play an important role in solving this problem and the technologies that support it. In this article, we address some relevant issues.

Coordinated Voltage Control using Multiple Regulators in Distribution System with Distributed Generators

The continued interest in the use of distributed generation in recent years is leading to the growth in number of distributed generators connected to distribution networks. Steady state voltage rise resulting from the connection of these generators can be a major obstacle to their connection at lower voltage levels. The present electric distribution network is designed to keep the customer voltage within tolerance limit. This may require a reduction in connectable generation capacity, under utilization of appropriate generation sites. Thus distribution network operators need a proper voltage regulation method to allow the significant integration of distributed generation systems to existing network. In this work a voltage rise problem in a typical distribution system has been studied. A method for voltage regulation of distribution system with multiple DG system by coordinated operation distributed generator, capacitor and OLTC has been developed. A sensitivity based analysis has been carried out to determine the priority for individual generators in multiple DG environment. The effectiveness of the developed method has been evaluated under various cases through simulation results.

Optimization of Methods for Development of Fermented-Distillate of Passion Fruit Beverage

Fermented beverages have high expression in the market for beverages in general, is increasingly valued in situations where the characteristic aroma and flavor of the material that gave rise to them are kept after processing. This study aimed to develop a distilled beverage from passion fruit, and assess, by sensory tests and chromatographic profile, the influence of different treatments (FM1- spirit with pulp addiction and FM2 – spirit with bigger ratio of pulp in must) in the setting of volatiles in the fruit drink, and performing chemical characterization taking into account the main parameters of quality established by the legislation. The chromatograms and the first sensorial tests had indicated that sample FM1 possess better characteristics of aroma, as much of how much quantitative the qualitative point of view. However, it analyzes it sensorial end (preference test) disclosed the biggest preference of the cloth provers for sample FM2-2 (note 7.93), being the attributes of decisive color and flavor in this reply, confirmed for the observed values lowest of fixed and total acidity in the samples of treatment FM2.

Linear Stability Characteristics of Wake-Shear Layers in Two-Phase Shallow Flows

Linear stability of wake-shear layers in two-phase shallow flows is analyzed in the present paper. Stability analysis is based on two-dimensional shallow water equations. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. Linear stability curves are obtained for different values of the particle loading parameter, the velocity ratio and the velocity deficit. It is shown that the increase in the velocity ratio destabilizes the flow. The particle loading parameter has a stabilizing effect on the flow. The role of the velocity deficit is also destabilizing: the increase of the velocity deficit leads to less stable flow.

Gait Recognition System: Bundle Rectangle Approach

Biometrics methods include recognition techniques such as fingerprint, iris, hand geometry, voice, face, ears and gait. The gait recognition approach has some advantages, for example it does not need the prior concern of the observed subject and it can record many biometric features in order to make deeper analysis, but most of the research proposals use high computational cost. This paper shows a gait recognition system with feature subtraction on a bundle rectangle drawn over the observed person. Statistical results within a database of 500 videos are shown.

Effect of a Gravel Bed Flocculator on the Efficiency of a Low Cost Water Treatment Plants

The principal objective of a water treatment plant is to produce water that satisfies a set of drinking water quality standards at a reasonable price to the consumers. The gravel-bed flocculator provide a simple and inexpensive design for flocculation in small water treatment plants (less than 5000 m3/day capacity). The packed bed of gravel provides ideal conditions for the formation of compact settleable flocs because of continuous recontact provided by the sinuous flow of water through the interstices formed by the gravel. The field data which were obtained from the operation of the water supply treatment unit cover the physical, chemical and biological water qualities of the raw and settled water as obtained by the operation of the treatment unit. The experiments were carried out with the aim of assessing the efficiency of the gravel filter in removing the turbidity, pathogenic bacteria, from the raw water. The water treatment plant, which was constructed for the treatment of river water, was in principle a rapid sand filter. The results show that the average value of the turbidity level of the settled water was 4.83 NTU with a standard deviation of turbidity 2.893 NTU. This indicated that the removal efficiency of the sedimentation tank (gravel filter) was about 67.8 %. for pH values fluctuated between 7.75 and 8.15, indicating the alkaline nature of the raw water of the river Shatt Al-Hilla, as expected. Raw water pH is depressed slightly following alum coagulation. The pH of the settled water ranged from 7.75 to a maximum of 8.05. The bacteriological tests which were carried out on the water samples were: total coliform test, E-coli test, and the plate count test. In each test the procedure used was as outlined in the Standard Methods for the Examination of Water and Wastewater (APHA, AWWA, and WPCF, 1985). The gravel filter exhibit a low performance in removing bacterial load. The percentage bacterial removal, which is maximum for total plate count (19%) and minimum for total coliform (16.82%).