Seasonal Water Quality Trends in the Feitsui Reservoir Watershed, Taiwan

Protecting is the sources of drinking water is the first barrier of contamination of drinking water. The Feitsui Reservoir watershed of Taiwan supplies domestic water for around 5 million people in the Taipei metropolitan area. Understanding the spatial patterns of water quality trends in this watershed is an important agenda for management authorities. This study examined 7 sites in the watershed for water quality parameters regulated in the standard for drinking water source. The non-parametric seasonal Mann-Kendall-s test was used to determine significant trends for each parameter. Significant trends of increasing pH occurred at the sampling station in the uppermost stream watershed, and in total phosphorus at 4 sampling stations in the middle and downstream watershed. Additionally, the multi-scale land cover assessment and average land slope were used to explore the influence on the water quality in the watershed. Regression models for predicting water quality were also developed.

Microstructure and Mechanical Properties of Duplex Stainless steel for Anchor Bolt Application

Most buildings have been using anchor bolts commonly for installing outdoor advertising structures. Anchor bolts of common carbon steel are widely used and often installed indiscriminately by inadequate installation standards. In the area where strong winds frequently blow, falling accidents of outdoor advertising structures can occur and cause a serious disaster, which is very dangerous and to be prevented. In this regard, the development of high-performance anchor bolts is urgently required. In the present study, 25Cr-8Ni-1.5Si-1Mn-0.4C alloy was produced by traditional vacuum induction melting (VIM) for the application of anchor bolt. The alloy composition is revealed as a duplex microstructure from thermodynamic phase analysis by FactSage® and confirmed by metallographic experiment. Addition of Nitrogen to the alloy was found to reduce the ferritic phase domain and significantly increase the hardness and the tensile strength. Microstructure observation revealed mixed structure of austenite and ferrite with fine carbide distributed along the grain and phase boundaries.

A Set Theory Based Factoring Technique and Its Use for Low Power Logic Design

Factoring Boolean functions is one of the basic operations in algorithmic logic synthesis. A novel algebraic factorization heuristic for single-output combinatorial logic functions is presented in this paper and is developed based on the set theory paradigm. The impact of factoring is analyzed mainly from a low power design perspective for standard cell based digital designs in this paper. The physical implementation of a number of MCNC/IWLS combinational benchmark functions and sub-functions are compared before and after factoring, based on a simple technology mapping procedure utilizing only standard gate primitives (readily available as standard cells in a technology library) and not cells corresponding to optimized complex logic. The power results were obtained at the gate-level by means of an industry-standard power analysis tool from Synopsys, targeting a 130nm (0.13μm) UMC CMOS library, for the typical case. The wire-loads were inserted automatically and the simulations were performed with maximum input activity. The gate-level simulations demonstrate the advantage of the proposed factoring technique in comparison with other existing methods from a low power perspective, for arbitrary examples. Though the benchmarks experimentation reports mixed results, the mean savings in total power and dynamic power for the factored solution over a non-factored solution were 6.11% and 5.85% respectively. In terms of leakage power, the average savings for the factored forms was significant to the tune of 23.48%. The factored solution is expected to better its non-factored counterpart in terms of the power-delay product as it is well-known that factoring, in general, yields a delay-efficient multi-level solution.

Effect of Secondary Curvature on Mixing Characteristic within Constant Circular Tubes

In this study, numerical simulations on laminar flow in sinusoidal wavy shaped tubes were conducted for mean Reynolds number of 250, which is in the range of physiological flow-rate and investigated flow structures, pressure distribution and particle trajectories both in steady and periodic inflow conditions. For extensive comparisons, various wave lengths and amplitudes of sine function for geometry of tube models were employed. The results showed that small amplitude secondary curvature has significant influence on the nature of flow patterns and particle mixing mechanism. This implies that characterizing accurate geometry is essential in accurate predicting of in vivo hemodynamics and may motivate further study on any possibility of reflection of secondary flow on vascular remodeling and pathophysiology.

Matching-Based Cercospora Leaf Spot Detection in Sugar Beet

In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.

Thermodynamic Study for Aggregation Behavior of Hydrotropic Solution

Aggregation behavior of sodium salicylate and sodium cumene sulfonate was studied in aqueous solution at different temperature. Specific conductivity and relative viscosity were measured at different temperature to find minimum hydrotropic concentration. The thermodynamic parameters (free energy, enthalpy and entropy) were evaluated in the temperature range of 30°C-70°C. The free energy decreased with increase in temperature. The aggregation was found to be exothermic in nature and favored by positive value of entropy.

Biodiesel Fuel Production by Methanolysis of Fish Oil Derived from the Discarded Parts of Fish Catalyzed by Carica papaya Lipase

In this paper, naturally immobilized lipase, Carica papaya lipase, catalyzed biodiesel production from fish oil was studied. The refined fish oil, extracted from the discarded parts of fish, was used as a starting material for biodiesel production. The effects of molar ratio of oil: methanol, lipase dosage, initial water activity of lipase, temperature and solvent were investigated. It was found that Carica papaya lipase was suitable for methanolysis of fish oil to produce methyl ester. The maximum yield of methyl ester could reach up to 83% with the optimal reaction conditions: oil: methanol molar ratio of 1: 4, 20% (based on oil) of lipase, initial water activity of lipase at 0.23 and 20% (based on oil) of tert-butanol at 40oC after 18 h of reaction time. There was negligible loss in lipase activity even after repeated use for 30 cycles.

The Role of the Dominant Party of the Republic of Kazakhstan and China's Ruling Party in a Country's Modernization: Similarities and Differences

The purpose of this work is to identify the positive and negative aspects of parties- participation in the country-s modernization, which in turn, will help a country to determine the necessary steps to improve the social-economic development. The article considers a question of the role of the dominating party of Kazakhstan and ruling party of China in the country-s modernization. Using a comparative analysis reveals differences between the People's Democratic Party “Nur Otan" and the Communist Party of China. It is discussed the policy of carrying out of modernization, the main actions of political parties of both countries with a view of modernization implementation.

Qanat (Subterranean Canal) Role in Traditional Cities and Settlements Formation of Hot-Arid Regions of Iran

A passive system "Qanat" is collection of some underground wells. A mother-well was dug in a place far from the city where they could reach to the water table maybe 100 meters underground, they dug other wells to direct water toward the city, with minimum possible gradient. Using the slope of the earth they could bring water close to the surface in the city. The source of water or the appearance of Qanat, land slope and the ownership lines are the important and effective factors in the formation of routes and the segment division of lands to the extent that making use of Qanat as the techniques of extracting underground waters creates a channel of routes with an organic order and hierarchy coinciding the slope of land and it also guides the Qanat waters in the tradition texture of salt desert and border provinces of it. Qanats are excavated in a specified distinction from each other. The quantity of water provided by Qanats depends on the kind of land, distance from mountain, geographical situation of them and the rate of water supply from the underground land. The rate of underground waters, possibility of Qanat excavation, number of Qanats and rate of their water supply from one hand and the quantity of cultivable fertile lands from the other hand are the important natural factors making the size of cities. In the same manner the cities with several Qanats have multi central textures. The location of cities is in direct relation with land quality, soil fertility and possibility of using underground water by excavating Qanats. Observing the allowable distance for Qanat watering is a determining factor for distance between villages and cities. Topography, land slope, soil quality, watering system, ownership, kind of cultivation, etc. are the effective factors in directing Qanats for excavation and guiding water toward the cultivable lands and it also causes the formation of different textures in land division of farming provinces. Several divisions such as orderly and wide, inorderly, thin and long, comb like, etc. are the introduction to organic order. And at the same time they are complete coincidence with environmental conditions in the typical development of ecological architecture and planning in the traditional cities and settlements order.

A Semi-Fragile Signature based Scheme for Ownership Identification and Color Image Authentication

In this paper, a novel scheme is proposed for ownership identification and authentication using color images by deploying Cryptography and Digital Watermarking as underlaying technologies. The former is used to compute the contents based hash and the latter to embed the watermark. The host image that will claim to be the rightful owner is first transformed from RGB to YST color space exclusively designed for watermarking based applications. Geometrically YS ÔèÑ T and T channel corresponds to the chrominance component of color image, therefore suitable for embedding the watermark. The T channel is divided into 4×4 nonoverlapping blocks. The size of block is important for enhanced localization, security and low computation. Each block along with ownership information is then deployed by SHA160, a one way hash function to compute the content based hash, which is always unique and resistant against birthday attack instead of using MD5 that may raise the condition i.e. H(m)=H(m'). The watermark payload varies from block to block and computed by the variance factorα . The quality of watermarked images is quite high both subjectively and objectively. Our scheme is blind, computationally fast and exactly locates the tampered region.

Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator

Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlinear in its nature. Direct torque control is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple occurs. So, the performance of conventional DTC with PI speed regulator can be improved by implementing fuzzy logic techniques. Certain important issues in design including the space vector modulated (SVM) 3-Ф voltage source inverter, DTFC design, generation of reference torque using PI-type fuzzy speed regulator and sensor less speed estimator have been resolved. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results indicate the sensor less speed control of IM with DTFC and PI-type fuzzy speed regulator provides satisfactory high dynamic and static performance compare to conventional DTC with PI speed regulator.

Effects of pH, Temperature, Enzyme and Substrate Concentration on Xylooligosaccharides Production

Agricultural residue such as oil palm fronds (OPF) is cheap, widespread and available throughout the year. Hemicelluloses extracted from OPF can be hydrolyzed to their monomers and used in production of xylooligosaccharides (XOs). The objective of the present study was to optimize the enzymatic hydrolysis process of OPF hemicellulose by varying pH, temperature, enzyme and substrate concentration for production of XOs. Hemicelluloses was extracted from OPF by using 3 M potassium hydroxide (KOH) at temperature of 40°C for 4 hrs and stirred at 400 rpm. The hemicellulose was then hydrolyzed using Trichoderma longibrachiatum xylanase at different pH, temperature, enzyme and substrate concentration. XOs were characterized based on reducing sugar determination. The optimum conditions to produced XOs from OPF hemicellulose was obtained at pH 4.6, temperature of 40°C , enzyme concentration of 2 U/mL and 2% substrate concentration. The results established the suitability of oil palm fronds as raw material for production of XOs.

Assessment of Sediment Quality in the West Port Based On the Index Analysis Approach

The coastal sediments of West Port of Malaysia was monitored from Nov. 2009 to Oct. 2010 to assess spatial distribution of heavy metals As, Cu, Cd, Cr, Hg, Ni, Zn and Pb. Sediment samples were collected from 10 stations in dry and rainy season in West Port. The range concentrations measured (Mg/g dry weight ) were from 23.4 to 98.3 for Zn, 22.3 to 80 for Pb, 7.4 to 27.6 Cu, 0.244 to 3.53 for Cd, 7.2 to 22.2 for Ni, 20.2 to 162 for As, 0.11 to 0.409 for Hg and 11.5 to 61.5 for Cr. The geochemical indexes used in this study were Geoaccumulation (Igeo), Contamination Factor (CF) and Pollution Load Index (PLI); these indexes were used to evaluate the levels of sediment contaminations. The results of these indexes show that, the status of West Port sediment quality are moderately polluted by heavy metals except in arsenic which shows the high level of pollution.

Application of the Transtheoretical Model of Exercise Behavior Change Plan in High School Students

The purpose of this study is to discuss the effect of the intervention of exercise behavior change plan for high school students on study subjects- social and psychological factors and exercise stages. This research uses the transtheoretical model as the research framework. One experiment group and one control group were used in a quasi-experimental design research. The experimental group accepted health-related physical fitness course and the traditional course; the control group accepted traditional physical education course. There is a significant difference before and after the intervention in the experimental group. Karl-s test shows the experimental group gained a better improvement than that in the control group. The Analysis of Covariance had shown the exercise stages (F=7.62, p

Performance Evaluation of AOMDV-PAMAC Protocols for Ad Hoc Networks

Power consumption of nodes in ad hoc networks is a critical issue as they predominantly operate on batteries. In order to improve the lifetime of an ad hoc network, all the nodes must be utilized evenly and the power required for connections must be minimized. In this project a link layer algorithm known as Power Aware medium Access Control (PAMAC) protocol is proposed which enables the network layer to select a route with minimum total power requirement among the possible routes between a source and a destination provided all nodes in the routes have battery capacity above a threshold. When the battery capacity goes below a predefined threshold, routes going through these nodes will be avoided and these nodes will act only as source and destination. Further, the first few nodes whose battery power drained to the set threshold value are pushed to the exterior part of the network and the nodes in the exterior are brought to the interior. Since less total power is required to forward packets for each connection. The network layer protocol AOMDV is basically an extension to the AODV routing protocol. AOMDV is designed to form multiple routes to the destination and it also avoid the loop formation so that it reduces the unnecessary congestion to the channel. In this project, the performance of AOMDV is evaluated using PAMAC as a MAC layer protocol and the average power consumption, throughput and average end to end delay of the network are calculated and the results are compared with that of the other network layer protocol AODV.

Simulation using the Recursive Method in USN

Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes, with the goal of deceiving the base station or depleting the resources of forwarding nodes. Several research solutions have been recently proposed to detect and drop such forged reports during the forwarding process. Each design can provide the equivalent resilience in terms of node compromising. However, their energy consumption characteristics differ from each other. Thus, employing only a single filtering scheme for a network is not a recommendable strategy in terms of energy saving. It's very important the threshold determination for message authentication to identify. We propose the recursive contract net protocols which less energy level of terminal node in wireless sensor network.

Improvement of Passengers Ride Comfort in Rail Vehicles Equipped with Air Springs

In rail vehicles, air springs are very important isolating component, which guarantee good ride comfort for passengers during their trip. In the most new rail–vehicle models, developed by researchers, the thermo–dynamical effects of air springs are ignored and secondary suspension is modeled by simple springs and dampers. As the performance of suspension components have significant effects on rail–vehicle dynamics and ride comfort of passengers, a complete nonlinear thermo–dynamical air spring model, which is a combination of two different models, is introduced. Result from field test shows remarkable agreement between proposed model and experimental data. Effects of air suspension parameters on the system performances are investigated here and then these parameters are tuned to minimize Sperling ride comfort index during the trip. Results showed that by modification of air suspension parameters, passengers comfort is improved and ride comfort index is reduced about 10%.

A New Framework for Evaluation and Prioritization of Suppliers using a Hierarchical Fuzzy TOPSIS

This paper suggests an algorithm for the evaluation and selection of suppliers. At the beginning, all the needed materials and services used by the organization were identified and categorized with regard to their nature by ABC method. Afterwards, in order to reduce risk factors and maximize the organization's profit, purchase strategies were determined. Then, appropriate criteria were identified for primary evaluation of suppliers applying to the organization. The output of this stage was a list of suppliers qualified by the organization to participate in its tenders. Subsequently, considering a material in particular, appropriate criteria on the ordering of the mentioned material were determined, taking into account the particular materials' specifications as well as the organization's needs. Finally, for the purpose of validation and verification of the proposed model, it was applied to Mobarakeh Steel Company (MSC), the qualified suppliers of this Company are ranked by the means of a Hierarchical Fuzzy TOPSIS method. The obtained results show that the proposed algorithm is quite effective, efficient and easy to apply.

Evaluation of Antioxidant Properties of Barberry Fruits Extracts Using Maceration and Subcritical Water Extraction (SWE)

The quality and shelf life of foods of containing lipids (fats and oils) significantly reduces due to rancidity.Applications of natural antioxidants are one of the most effective manners to prevent the oxidation of oils and lipids. The antioxidant properties of juice extracted from barberry fruit (Berberris vulgaris.L) using maceration and SWE (10 bars and 120 - 180°C) methods were investigated and compared with conventional method. The amount of phenolic compound and reduction power of all samples were determined and the data were statistically analyzed using multifactor design. The results showed that the total amount of phenolic compound increased with increasing of pressure and temprature from 1861.9 to 2439.1 (mg Gallic acid /100gr Dry matter). The ability of reduction power of SWE obtained antioxidant extract compared with BHA (synthetic antioxidant) and ascorbic acid (natural antioxidant). There were significant differences among reduction power of extracts and there were remarkable difference with BHA and Ascorbic acid (P

Data Mining on the Router Logs for Statistical Application Classification

With the advance of information technology in the new era the applications of Internet to access data resources has steadily increased and huge amount of data have become accessible in various forms. Obviously, the network providers and agencies, look after to prevent electronic attacks that may be harmful or may be related to terrorist applications. Thus, these have facilitated the authorities to under take a variety of methods to protect the special regions from harmful data. One of the most important approaches is to use firewall in the network facilities. The main objectives of firewalls are to stop the transfer of suspicious packets in several ways. However because of its blind packet stopping, high process power requirements and expensive prices some of the providers are reluctant to use the firewall. In this paper we proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. By discriminating these data, an administrator may take an approach action against the user. This method is very fast and can be used simply in adjacent with the Internet routers.