Study on Scheduling of the Planning Method Using the Web-based Visualization System in a Shipbuilding Block Assembly Shop

Higher productivity and less cost in the ship manufacturing process are required to maintain the international competitiveness of morden manufacturing industries. In shipbuilding, however, the Engineering To Order (ETO) production method and production process is very difficult. Thus, designs change frequently. In accordance with production, planning should be set up according to scene changes. Therefore, fixed production planning is very difficult. Thus, a scheduler must first make sketchy plans, then change the plans based on the work progress and modifications. Thus, data sharing in a shipbuilding block assembly shop is very important. In this paper, we proposed to scheduling method applicable to the shipbuilding industry and decision making support system through web based visualization system.

Generational Differences in Perception of Affective Climate Antecedents

This study aims to explore the differences and similarities in perceptions of affective climate antecedents at the workplace (intimacy, flexibility, employment stability, and team) among Japanese and Thai Generations X and Y. The samples in this study were Thai and Japanese workers who completed a work environment questionnaire and provided demographic information. Generational differences in perceptions (beliefs) of what factors contribute to affective climate were investigated using t-test analysis. Mean scores for each antecedent were ranked to determine how each generation in each group prioritized the importance of all affective climate antecedents. Japanese Generation Y perceived the importance of employment stability for affective climate of their workplaces to be significantly higher than did Japanese Generation X. Thai Generation Y considered flexibility with a higher priority than did Thai Generation X. Intimacy was perceived as highly important across generations and countries in regard to affective climate. Results suggest that managers should design workplaces for a mixture of diverse generations, resulting in a better affective climate. Differences in the importance of antecedents for affective climate among Generations X and Y in two countries were clarified. In addition, different preferences regarding work environment across Japanese Generations X and Y and Thai Generations X and Y were discussed.

Enhanced Spectral Envelope Coding Based On NLMS for G.729.1

In this paper, a new encoding algorithm of spectral envelope based on NLMS in G.729.1 for VoIP is proposed. In the TDAC part of G.729.1, the spectral envelope and MDCT coefficients extracted in the weighted CELP coding error (lower-band) and the higher-band input signal are encoded. In order to reduce allocation bits for spectral envelope coding, a new quantization algorithm based on NLMS is proposed. Also, reduced bits are used to enhance sound quality. The performance of the proposed algorithm is evaluated by sound quality and bit reduction rates in clean and frame loss conditions.

Dielectric Studies on Nano Zirconium Dioxide Synthesized through Co-Precipitation Process

Nano sized zirconium dioxide in monoclinic phase (m-ZrO2) has been synthesized in pure form through co-precipitation processing at different calcination temperatures and has been characterized by several techniques such as XRD, FT-IR, UV-Vis Spectroscopy and SEM. The dielectric and capacitance values of the pelletized samples have been examined at room temperature as the functions of frequency. The higher dielectric constant value of the sample having larger grain size proves the strong influence of grain size on the dielectric constant.

An Agent Oriented Architecture to Supply Multilanguage in EPR Systems

ERP systems are often supposed to be implemented and deployed in multi-national companies. On the other hand, an ERP developer may plan to market and sale its product in various countries. Therefore, an EPR system should have the ability to communicate with its users, who usually have different languages and cultures, in a suitable way. EPR support of Multilanguage capability is a solution to achieve this objective. In this paper, an agent oriented architecture including several independent but cooperative agents has been suggested that helps to implement Multilanguage EPR systems.

TFRank: An Evaluation of Users Importance with Fractal Views in Social Networks

One of research issues in social network analysis is to evaluate the position/importance of users in social networks. As the information diffusion in social network is evolving, it seems difficult to evaluate the importance of users using traditional approaches. In this paper, we propose an evaluation approach for user importance with fractal view in social networks. In this approach, the global importance (Fractal Importance) and the local importance (Topological Importance) of nodes are considered. The basic idea is that the bigger the product of fractal importance and topological importance of a node is, the more important of the node is. We devise the algorithm called TFRank corresponding to the proposed approach. Finally, we evaluate TFRank by experiments. Experimental results demonstrate our TFRank has the high correlations with PageRank algorithm and potential ranking algorithm, and it shows the effectiveness and advantages of our approach.

Dehydroxylation of Glycerol to Propylene Glycol over Cu-ZnO/Al2O3 Catalyst: Effect of Feed Purity

The catalytic dehydroxylation of glycerol to propylene glycol was investigated over Cu-ZnO/Al2O3 prepared by incipient wetness impregnation (IWI) method with different purity feedstocks - refined glycerol and technical grade glycerol. The main purpose is to investigate the effects of feed impurities that cause the catalyst deactivation. The prepared catalyst were tested for its catalytic activity and selectivity in a continuous flow fixed bed reactor at 523 K, 500 psig, H2/feed molar ratio of 4 and WHSV of 3 h-1. The results showed that conversion of refined glycerol and technical grade glycerol at time on stream 6 hour are 99% and 71% and selectivity to propylene glycol are 87% and 56% respectively. The ICP-EOS and TPO results indicated that the cause of catalyst deactivation was the amount of impurities in the feedstock. The higher amount of impurities (especially Na and K) the lower catalytic activity.

Reduced Inventories, High Reliability and Short Throughput Times by Using CONWIP Production Planning System

CONWIP (constant work-in-process) as a pull production system have been widely studied by researchers to date. The CONWIP pull production system is an alternative to pure push and pure pull production systems. It lowers and controls inventory levels which make the throughput better, reduces production lead time, delivery reliability and utilization of work. In this article a CONWIP pull production system was simulated. It was simulated push and pull planning system. To compare these systems via a production planning system (PPS) game were adjusted parameters of each production planning system. The main target was to reduce the total WIP and achieve throughput and delivery reliability to minimum values. Data was recorded and evaluated. A future state was made for real production of plastic components and the setup of the two indicators with CONWIP pull production system which can greatly help the company to be more competitive on the market.

A New Current-mode Multifunction Filter with High Impedance Outputs Using Minimum Number of Passive Elements

A new current-mode multifunction filter using minimum number of passive elements is proposed. The proposed filter has single-input and four high-impedance outputs. It uses four passive elements (two capacitors and two resistors) and four dual output second generation current conveyors. Each output provides a different filter response, namely, low-pass, high-pass, band-pass and band-reject. The sensitivity analysis is also carried out on both ideal and non-ideal filter configurations. The validity of the proposed filter is verified through PSPICE simulations.

Investigation of Corona wind Effect on Heat and Mass Transfer Enhancement

Applying corona wind as a novel technique can lead to a great level of heat and mass transfer augmentation by using very small amount of energy. Enhancement of forced flow evaporation rate by applying electric field (corona wind) has been experimentally evaluated in this study. Corona wind produced by a fine wire electrode which is charged with positive high DC voltage impinges to water surface and leads to evaporation enhancement by disturbing the saturated air layer over water surface. The study was focused on the effect of corona wind velocity, electrode spacing and air flow velocity on the level of evaporation enhancement. Two sets of experiments, i.e. with and without electric field, have been conducted. Data obtained from the first experiment were used as reference for evaluation of evaporation enhancement at the presence of electric field. Applied voltages ranged from corona threshold voltage to spark over voltage at 1 kV increments. The results showed that corona wind has great enhancement effect on water evaporation rate, but its effectiveness gradually diminishes by increasing air flow velocity. Maximum enhancements were 7.3 and 3.6 for air velocities of 0.125 and 1.75 m/s, respectively.

Challenges for Security in Wireless Sensor Networks (WSNs)

Wireless sensor network is formed with the combination of sensor nodes and sink nodes. Recently Wireless sensor network has attracted attention of the research community. The main application of wireless sensor network is security from different attacks both for mass public and military. However securing these networks, by itself is a critical issue due to many constraints like limited energy, computational power and lower memory. Researchers working in this area have proposed a number of security techniques for this purpose. Still, more work needs to be done.In this paper we provide a detailed discussion on security in wireless sensor networks. This paper will help to identify different obstacles and requirements for security of wireless sensor networks as well as highlight weaknesses of existing techniques.

Svision: Visual Identification of Scanning and Denial of Service Attacks

We propose a novel graphical technique (SVision) for intrusion detection, which pictures the network as a community of hosts independently roaming in a 3D space defined by the set of services that they use. The aim of SVision is to graphically cluster the hosts into normal and abnormal ones, highlighting only the ones that are considered as a threat to the network. Our experimental results using DARPA 1999 and 2000 intrusion detection and evaluation datasets show the proposed technique as a good candidate for the detection of various threats of the network such as vertical and horizontal scanning, Denial of Service (DoS), and Distributed DoS (DDoS) attacks.

Automated Service Scene Detection for Badminton Game Analysis Using CHLAC and MRA

Extracting in-play scenes in sport videos is essential for quantitative analysis and effective video browsing of the sport activities. Game analysis of badminton as of the other racket sports requires detecting the start and end of each rally period in an automated manner. This paper describes an automatic serve scene detection method employing cubic higher-order local auto-correlation (CHLAC) and multiple regression analysis (MRA). CHLAC can extract features of postures and motions of multiple persons without segmenting and tracking each person by virtue of shift-invariance and additivity, and necessitate no prior knowledge. Then, the specific scenes, such as serve, are detected by linear regression (MRA) from the CHLAC features. To demonstrate the effectiveness of our method, the experiment was conducted on video sequences of five badminton matches captured by a single ceiling camera. The averaged precision and recall rates for the serve scene detection were 95.1% and 96.3%, respectively.

The Suitability of GPS Receivers Update Rates for Navigation Applications

Navigation is the processes of monitoring and controlling the movement of an object from one place to another. Currently, Global Positioning System (GPS) is the main navigation system used all over the world for navigation applications. GPS receiver receives signals from at least three satellites to locate and display itself. Displayed positioning information is updated continuously. Update rate is the number of times per second that a display is illuminated. The speed of update is governed by receiver update rate. A higher update rate decreases display lag time and improves distance measurements and tracking especially when moving on a curvy route. The majority of GPS receivers used nowadays are updated every second continuously. This period is considered reasonable for some applications while it is long relatively for high speed applications. In this paper, the suitability and feasibility of GPS receiver with different update rates will be evaluated for various applications according to the level of speed and update rate needed for particular applications.

The Effect of Rotational Speed and Shaft Eccentric on Looseness of Bearing

This research was to study effect of rotational speed and eccentric factors, which were affected on looseness of bearing. The experiment was conducted on three rotational speeds and five eccentric distances with 5 replications. The results showed that influenced factor affected to looseness of bearing was rotational speed and eccentric distance which showed statistical significant. Higher rotational speed would cause on high looseness. Moreover, more eccentric distance, more looseness of bearing. Using bearing at high rotational with high eccentric of shaft would be affected bearing fault more than lower rotational speed. The prediction equation of looseness was generated by regression analysis. The prediction has an effected to the looseness of bearing at 91.5%.

An Embedded System Design for SRAM SEU Test

An embedded system for SEU(single event upset) test needs to be designed to prevent system failure by high-energy particles during measuring SEU. SEU is a phenomenon in which the data is changed temporary in semiconductor device caused by high-energy particles. In this paper, we present an embedded system for SRAM(static random access memory) SEU test. SRAMs are on the DUT(device under test) and it is separated from control board which manages the DUT and measures the occurrence of SEU. It needs to have considerations for preventing system failure while managing the DUT and making an accurate measurement of SEUs. We measure the occurrence of SEUs from five different SRAMs at three different cyclotron beam energies 30, 35, and 40MeV. The number of SEUs of SRAMs ranges from 3.75 to 261.00 in average.

Using Suffix Tree Document Representation in Hierarchical Agglomerative Clustering

In text categorization problem the most used method for documents representation is based on words frequency vectors called VSM (Vector Space Model). This representation is based only on words from documents and in this case loses any “word context" information found in the document. In this article we make a comparison between the classical method of document representation and a method called Suffix Tree Document Model (STDM) that is based on representing documents in the Suffix Tree format. For the STDM model we proposed a new approach for documents representation and a new formula for computing the similarity between two documents. Thus we propose to build the suffix tree only for any two documents at a time. This approach is faster, it has lower memory consumption and use entire document representation without using methods for disposing nodes. Also for this method is proposed a formula for computing the similarity between documents, which improves substantially the clustering quality. This representation method was validated using HAC - Hierarchical Agglomerative Clustering. In this context we experiment also the stemming influence in the document preprocessing step and highlight the difference between similarity or dissimilarity measures to find “closer" documents.

2D Rigid Registration of MR Scans using the 1d Binary Projections

This paper presents the application of a signal intensity independent registration criterion for 2D rigid body registration of medical images using 1D binary projections. The criterion is defined as the weighted ratio of two projections. The ratio is computed on a pixel per pixel basis and weighting is performed by setting the ratios between one and zero pixels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the one areas of the two projections and it is minimized using the Chebyshev polynomial approximation using n=5 points. The sum of x and y projections is used for translational adjustment and a 45deg projection for rotational adjustment. 20 T1- T2 registration experiments were performed and gave mean errors 1.19deg and 1.78 pixels. The method is suitable for contour/surface matching. Further research is necessary to determine the robustness of the method with regards to threshold, shape and missing data.

Distribution Feeder Reconfiguration Considering Distributed Generators

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. Fueling the attention have been the possibilities of international agreements to reduce greenhouse gas emissions, electricity sector restructuring, high power reliability requirements for certain activities, and concern about easing transmission and distribution capacity bottlenecks and congestion. So it is necessary that impact of these kinds of generators on distribution feeder reconfiguration would be investigated. This paper presents an approach for distribution reconfiguration considering Distributed Generators (DGs). The objective function is summation of electrical power losses A Tabu search optimization is used to solve the optimal operation problem. The approach is tested on a real distribution feeder.

Protocol Modifications for Improved Co-Channel Wireless LAN Goodput in Partitioned Spaces

Partitions can play a significant role in minimising cochannel interference of Wireless LANs by attenuating signals across room boundaries. This could pave the way towards higher density deployments in home and office environments through spatial channel reuse. Yet, due to protocol limitations, the latest incantation of IEEE 802.11 standard is still unable to take advantage of this fact: Despite having clearly adequate Signal to Interference Ratio (SIR) over co-channel neighbouring networks in other rooms, its goodput falls significantly lower than its maximum in the absence of cochannel interferers. In this paper, we describe how this situation can be remedied via modest modifications to the standard.