New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based On Polarization-Holographic Grating

A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarizationholographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.

Graded Orientation of the Linear Polymers

Some regularities of formation of a new structural state of the thermoplastic polymers - gradually oriented (stretched) state (GOS) are discussed. Transition into GOS is realized by the graded oriented stretching - by action of inhomogeneous mechanical field on the isotropic linear polymers or by zone stretching that is implemented on a standard tensile-testing machine with using a specially designed zone stretching device (ZSD). Both technical approaches (especially zone stretching method) allows to manage the such quantitative parameters of gradually oriented polymers as a range of change in relative elongation/orientation degree, length of this change and profile (linear, hyperbolic, parabolic, logarithmic, etc.). The possibility of obtaining functionally graded materials (FGMs) by graded orientation method is briefly discussed. Uniaxial graded stretching method should be considered as an effective technological solution to create polymer materials with a predetermined gradient of physical properties.

Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S

In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.

Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition

In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.

The Evaluation of the Performance of Different Filtering Approaches in Tracking Problem and the Effect of Noise Variance

Performance of different filtering approaches depends on modeling of dynamical system and algorithm structure. For modeling and smoothing the data the evaluation of posterior distribution in different filtering approach should be chosen carefully. In this paper different filtering approaches like filter KALMAN, EKF, UKF, EKS and smoother RTS is simulated in some trajectory tracking of path and accuracy and limitation of these approaches are explained. Then probability of model with different filters is compered and finally the effect of the noise variance to estimation is described with simulations results.

Thiopental-Fentanyl versus Midazolam-Fentanyl for Emergency Department Procedural Sedation and Analgesia in Patients with Shoulder Dislocation and Distal Radial Fracture-Dislocation: A Randomized Double-Blind Controlled Trial

Background and aim: It has not been well studied whether fentanyl-thiopental (FT) is effective and safe for PSA in orthopedic procedures in Emergency Department (ED). The aim of this trial was to evaluate the effectiveness of intravenous FT versus fentanyl-midazolam (FM) in patients who suffered from shoulder dislocation or distal radial fracture-dislocation. Methods: In this randomized double-blinded study, Seventy-six eligible patients were entered the study and randomly received intravenous FT or FM. The success rate, onset of action and recovery time, pain score, physicians’ satisfaction and adverse events were assessed and recorded by treating emergency physicians. The statistical analysis was intention to treat. Results: The success rate after administrating loading dose in FT group was significantly higher than FM group (71.7% vs. 48.9%, p=0.04); however, the ultimate unsuccessful rate after 3 doses of drugs in the FT group was higher than the FM group (3 to 1) but it did not reach to significant level (p=0.61). Despite near equal onset of action time in two study group (P=0.464), the recovery period in patients receiving FT was markedly shorter than FM group (P

Statistical Description of Counterpoise Effective Length Based On Regressive Formulas

This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations.

A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Fetal and Infant Mortality in Botucatu City, São Paulo State, Brazil: Evaluation of Maternal - Infant Health Care

In Brazil, neonatal mortality rate is considered incompatible with the country development conditions, and has been a Public Health concern. Reduction in infant mortality rates has also been part of the Millennium Development Goals, a commitment made by countries, members of the Organization of United Nations (OUN), including Brazil. Fetal mortality rate is considered a highly sensitive indicator of health care quality. Suitable actions, such as good quality and access to health services may contribute positively towards reduction in these fetal and neonatal rates. With appropriate antenatal follow-up and health care during gestation and delivery, some death causes could be reduced or even prevented by means of early diagnosis and intervention, as well as changes in risk factors and interventions. Objectives: To study the quality of maternal and infant health care based on fetal and neonatal mortality, as well as the possible actions to prevent those deaths in Botucatu (Brazil). Methods: Classification of prevention according to the International Classification of Diseases and the modified Wigglesworth´s classification. In order to evaluate adequacy, indicators of quality of antenatal and delivery care were established by the authors. Results: Considering fetal deaths, 56.7% of them occurred before delivery, which reveals possible shortcomings in antenatal care, and 38.2% of them were a result of intra- labor changes, which could be prevented or reduced by adequate obstetric management. These findings were different from those in the group of early neonatal deaths which were also studied. Adequacy of health services showed that antenatal and childbirth care was appropriate for 24% and 33.3% of pregnant women, respectively, which corroborates the results of prevention. These results revealed that shortcomings in obstetric and antenatal care could be the causes of deaths in the study. Early and late neonatal deaths have similar characteristics: 76% could be prevented or reduced mainly by adequate newborn care (52.9%) and adequate health care for gestational women (11.7%). When adequacy of care was evaluated, childbirth and newborn care was adequate in 25.8% and antenatal care was adequate in 16.1%. In conclusion, direct relationship was found between adequacy and quality of care rendered to pregnant women and newborns, and fetal and infant mortality. Moreover, our findings highlight that deaths could be prevented by an adequate obstetric and neonatal management.

Assessing Chemo-Radiotherapy Induced Toxicity and Quality of Life of Cancer Patients

Chemotherapy and radiotherapy are one of the major treatment modalities that play important role in the management of a number of different cancers. This study for the first time evaluates the toxicity of these treatment modalities and its impact on quality of life of cancer patients in Pakistan. The study also for the first time determines what cancer patients of different ages and cancer stages believe would be an effective intervention to manage their psychosocial needs and treatment induced toxicity. The article also provides evidence based approach for the use of variety of interventions to mange cancer treatment induced morbidity and toxicity. In light of the present study and reviewed research data, evidence based recommendations are also made for selection of appropriate interventions to manage Pain, Nausea and Vomiting, Anxiety and Depression, Fatigue and Overall QOL of cancer survivors.

Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques

Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound (BB) method to simplify the texts.

A Novel Approach to Asynchronous State Machine Modeling on Multisim for Avoiding Function Hazards

The aim of this study was to design and simulate a particular type of Asynchronous State Machine (ASM), namely a ‘traffic light controller’ (TLC), operated at a frequency of 0.5 Hz. The design task involved two main stages: firstly, designing a 4-bit binary counter using J-K flip flops as the timing signal and, subsequently, attaining the digital logic by deploying ASM design process. The TLC was designed such that it showed a sequence of three different colours, i.e. red, yellow and green, corresponding to set thresholds by deploying the least number of AND, OR and NOT gates possible. The software Multisim was deployed to design such circuit and simulate it for circuit troubleshooting in order for it to display the output sequence of the three different colours on the traffic light in the correct order. A clock signal, an asynchronous 4- bit binary counter that was designed through the use of J-K flip flops along with an ASM were used to complete this sequence, which was programmed to be repeated indefinitely. Eventually, the circuit was debugged and optimized, thus displaying the correct waveforms of the three outputs through the logic analyser. However, hazards occurred when the frequency was increased to 10 MHz. This was attributed to delays in the feedback being too high.

Negative Pressure Waves in Hydraulic Systems

Negative pressure phenomenon appears in many thermodynamic, geophysical and biophysical processes in the Nature and technological systems. For more than 100 years of the laboratory researches beginning from F. M. Donny’s tests, the great values of negative pressure have been achieved. But this phenomenon has not been practically applied, being only a nice lab toy due to the special demands for the purity and homogeneity of the liquids for its appearance. The possibility of creation of direct wave of negative pressure in real heterogeneous liquid systems was confirmed experimentally under the certain kinetic and hydraulic conditions. The negative pressure can be considered as the factor of both useful and destroying energies. The new approach to generation of the negative pressure waves in impure, unclean fluids has allowed the creation of principally new energy saving technologies and installations to increase the effectiveness and efficiency of different production processes. It was proved that the negative pressure is one of the main factors causing hard troubles in some technological and natural processes. Received results emphasize the necessity to take into account the role of the negative pressure as an energy factor in evaluation of many transient thermohydrodynamic processes in the Nature and production systems.

Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective

In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.

Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Multi Objective Simultaneous Assembly Line Balancing and Buffer Sizing

Assembly line balancing problem is aimed to divide the tasks among the stations in assembly lines and optimize some objectives. In assembly lines the workload on stations is different from each other due to different tasks times and the difference in workloads between stations can cause blockage or starvation in some stations in assembly lines. Buffers are used to store the semi-finished parts between the stations and can help to smooth the assembly production. The assembly line balancing and buffer sizing problem can affect the throughput of the assembly lines. Assembly line balancing and buffer sizing problems have been studied separately in literature and due to their collective contribution in throughput rate of assembly lines, balancing and buffer sizing problem are desired to study simultaneously and therefore they are considered concurrently in current research. Current research is aimed to maximize throughput, minimize total size of buffers in assembly line and minimize workload variations in assembly line simultaneously. A multi objective optimization objective is designed which can give better Pareto solutions from the Pareto front and a simple example problem is solved for assembly line balancing and buffer sizing simultaneously. Current research is significant for assembly line balancing research and it can be significant to introduce optimization approaches which can optimize current multi objective problem in future.

Stereo Motion Tracking

Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.

The Perspectives of Preparing Psychology Practitioners in Armenian Universities

The problem of psychologist training remains a key priority in Armenia. During the Soviet period, the notion of a psychologist was obscure not only in Armenia but also in other Soviet republics. The breakup of the Soviet Union triggered a gradual change in this area activating the cooperation with specialists from other countries. The need for recovery from the psychological trauma caused by the 1988 earthquake pushed forward the development of practical psychology in Armenia. This phenomenon led to positive changes in perception of and interest to a psychologist profession.Armenian universities started designing special programs for psychologists’ preparation. Armenian psychologists combined their efforts in the field of training relevant specialists. During the recent years, the Bologna educational system was introduced in Armenia which led to implementation of education quality improvement programs. Nevertheless, even today the issue of psychologists’ training is not yet settled in Armenian universities. So far graduate psychologists haven’t got a clear idea of personal and professional qualities of a psychologist. Recently, as a result of educational reforms, the psychology curricula underwent changes, but so far they have not led to a desired outcome. Almost all curricula in certain specialties are aimed to form professional competencies and strengthen practical skills. A survey conducted in Armenia aimed to identify what are the ideas of young psychology specialists on the image of a psychologist. The survey respondents were 45 specialists holding bachelor’s degree as well as 30 master degree graduates, who have not been working yet. The research reveals that we need to change the approach of preparing psychology practitioners in the universities of Armenia. Such an approach to psychologist training will make it possible to train qualified specialists for enhancement of modern psychology theory and practice.