Determination and Comparison of Fabric Pills Distribution Using Image Processing and Spatial Data Analysis Tools

This work deals with the determination and comparison of pill patterns in 2 sets of fabric samples which differ in way of pill creation. The first set contains fabric samples with the pills created by simulation on a Martindale abrasion machine, while pills in the second set originated during normal wearing and maintenance. The goal of the study is to determine whether the pattern of the fabric pills created by simulation is the same as the pattern of naturally occurring pills. The system of determination and comparison of the pills is based on image processing and spatial data analysis tools. Firstly, 3D reconstruction of the fabric surfaces with the pills is realized with using a gradient fields method. The gradient fields method creates a 3D fabric surface from a set of 4 images. Thereafter, the pills are detected in 3D fabric surfaces using image-processing tools in the MATLAB software. Determination and comparison of the pills patterns of two sets of fabric samples is based on spatial data analysis using tools in R software.

Changes in EEG and HRV during Event-Related Attention

Determination of attentional status is important because working performance and an unexpected accident is highly related with the attention. The autonomic nervous and the central nervous systems can reflect the changes in person’s attentional status. Reduced number of suitable pysiological parameters among autonomic and central nervous systems related signal parameters will be critical in optimum design of attentional devices. In this paper, we analyze the EEG (Electroencephalography) and HRV (Heart Rate Variability) signals to demonstrate the effective relation with brain signal and cardiovascular signal during event-related attention, which will be later used in selecting the minimum set of attentional parameters. Time and frequency domain parameters from HRV signal and frequency domain parameters from EEG signal are used as input to the optimum feature parameters selector.

Selection of a Tower Crane Using Augmented Reality in Smart Devices

Appropriate selection of lifting equipments for a high-rise building construction project is one of the important factors to the project’s success. Proper position of a tower crane on a construction site is so important to be determined by an expert or an experienced construction manager who draws working range of a tower crane and moves it over a 2D (dimensional) site layout plan. But it is not usual to use 3D CAD, BIM or virtual reality for temporary facility planning or selection of a tower crane. This study proposes a method to use augmented reality to select proper position of tower cranes. An augmented reality prototype is implemented on a smart device to verify the practicability of the proposed method.

The Strategy of Creating a Virtual Interactive Platform for the Low-Carbon Open Innovations Relay

A strategy for the creation of a Virtual Interactive Platform (or Networking Platform) to combine the four web-baseness of expert systems on the transfer and diffusion of low-carbon technologies. It used the concept of “Open Innovation” and “Triple Helix” with regard to theories of “Green Growth” and “Carbon Footprint”. Interpreters expert systems operate on the basis of models of the “Predator-Prey” for the process of transfer and diffusion of technologies, taking into account the features caused by the need to mitigate the effects of climate change.

The HDH Model for the Development of Creative Structural Thinking and Its Applications to Other Systems

Teaching structures and structural design in architectural studies is considered a difficult mission due to complex reasons and circumstances. This article proposes a new conceptual model (HDH) for teaching structures and structural design in architectural studies. Because of its systems-thinking orientation it is also relevant and applicable to other fields and systems. The HDH model was developed in order to encourage the integration of science and art, especially in relation to structures, in architectural studies.

Resource Efficiency within Current Production

In times of global warming and the increasing shortage of resources, sustainable production is becoming more and more inevitable. Companies cannot only heighten their competitiveness but also contribute positively to environmental protection through efficient energy and resource consumption. Regarding this, technical solutions are often preferred during production, although organizational and process-related approaches also offer great potential. This project focuses on reducing resource usage, with a special emphasis on the human factor. It is the aspiration to develop a methodology that systematically implements and embeds suitable and individual measures and methods regarding resource efficiency throughout the entire production. The measures and methods established help employees handle resources and energy more sensitively. With this in mind, this paper also deals with the difficulties that can occur during the sensitization of employees and the implementation of these measures and methods. In addition, recommendations are given on how to avoid such difficulties.

Advances on LuGre Friction Model

LuGre friction model is an ordinary differential equation that is widely used in describing the friction phenomenon for mechanical systems. The importance of this model comes from the fact that it captures most of the friction behavior that has been observed including hysteresis. In this paper, we study some aspects related to the hysteresis behavior induced by the LuGre friction model.

Influence of After Body Shape on the Performance of Blunt Shaped Bodies as Vortex Shedders

The present study explores flow visualization experiments with various blunt shaped bluff bodies placed inside a circular pipe. The bodies mainly comprise of modifications of trapezoidal cylinder, most widely used in practical applications, such as vortex flowmeters. The present configuration possesses the feature of both internal and external flows with low aspect ratio. The vortex dynamics of bluff bodies in such configuration is seldom reported in the literature. Dye injection technique is employed to visualize the complex vortex formation mechanism behind the bluff bodies. The influence of orientation, slit and after body shape is studied in an attempt to obtain better understanding of the vortex formation mechanism. Various wake parameters like Strouhal number, vortex formation length and wake width are documented for these shapes. Vortex formation both with and without shear layer interaction is observed for most of the shapes.

Estimation of Missing or Incomplete Data in Road Performance Measurement Systems

Modern management in most fields is performance based; both planning and implementation of maintenance and operational activities are driven by appropriately defined performance indicators. Continuous real-time data collection for management is becoming feasible due to technological advancements. Outdated and insufficient input data may result in incorrect decisions. When using deterministic models the uncertainty of the object state is not visible thus applying the deterministic models are more likely to give false diagnosis. Constructing structured probabilistic models of the performance indicators taking into consideration the surrounding indicator environment enables to estimate the trustworthiness of the indicator values. It also assists to fill gaps in data to improve the quality of the performance analysis and management decisions. In this paper authors discuss the application of probabilistic graphical models in the road performance measurement and propose a high-level conceptual model that enables analyzing and predicting more precisely future pavement deterioration based on road utilization.

A Study of Current Maintenance Strategies and the Reliability of Critical Medical Equipment in Hospitals in Relation to Patient Outcomes

This study investigates the relationship between the reliability of critical medical equipment (CME) and the effectiveness of CME maintenance management strategies in relation to patient outcomes in 84 public hospitals of a top 20 OECD country. The work has examined the effectiveness of CME maintenance management strategies used by the public hospital system of a large state run health organization. The conceptual framework was designed to examine the significance of the relationship between six variables: (1) types of maintenance management strategies, (2) maintenance services, (3) maintenance practice, (4) medical equipment reliability, (5) maintenance costs and (6) patient outcomes. The results provide interesting insights into the effectiveness of the maintenance strategies used. For example, there appears to be about a 1 in 10 000 probability of failure of anesthesia equipment, but these seem to be confined to specific maintenance situations. There are also some findings in relation to outsourcing of maintenance. For each of the variables listed, results are reported in relation to the various types of maintenance strategies and services. Decision-makers may use these results to evaluate more effective maintenance strategies for their CME and generate more effective patient outcomes.

Stack Ventilation for an Office Building with a Multi-Story Atrium

This study examines the stack ventilation performance of an office building located in Taipei, Taiwan. Atriums in this building act as stacks that facilitate buoyancy-driven ventilation. Computational Fluid Dynamic (CFD) simulations are used to identify interior airflow patterns, and then used these patterns to assess the building’s heat expulsion efficiency. Ambient temperatures of 20°C were adopted as the typical seasonal spring temperature range in Taipei. Further, “zero-wind” conditions are established to ensure simulation results reflected only the buoyancy effect. After checking results against neutral pressure level (NPL) level, airflow, air velocity, and indoor temperature stratification, the lower stack is modified to reduce the NPL in order to remove heat accumulated on the top floor.

Development of a Model for the Redesign of Plant Structures

In order to remain competitive in what is a turbulent environment; businesses must be able to react rapidly to change. The past response to volatile market conditions was to introduce an element of flexibility to production. Nowadays, what is often required is a redesign of factory structures in order to cope with the state of constant flux. The Institute of Production Systems and Logistics is currently developing a descriptive and causal model for the redesign of plant structures as part of an ongoing research project. This article presents the first research findings attained in devising this model.

Using Smartphones as an Instrument of Early Warning and Emergency Localization

This paper suggests using smartphones and community GPS application to make alerts more accurate and therefore positively influence the entire warning process. The paper is based on formerly published paper describing a Radio-HELP system. It summarizes existing methods and lists the advantages of proposed solution. The paper analyzes the advantages and disadvantages of each possible input, processing and output of the warning system.

A Simple Epidemiological Model for Typhoid with Saturated Incidence Rate and Treatment Effect

Typhoid fever is a communicable disease, found only in man and occurs due to systemic infection mainly by Salmonella typhi organism. The disease is endemic in many developing countries and remains a substantial public health problem despite recent progress in water and sanitation coverage. Globally, it is estimated that typhoid causes over 16 million cases of illness each year, resulting in over 600,000 deaths. A mathematical model for assessing the impact of educational campaigns on controlling the transmission dynamics of typhoid in the community, has been formulated and analyzed. The reproductive number has been computed. Stability of the model steady-states has been examined. The impact of educational campaigns on controlling the transmission dynamics of typhoid has been discussed through the basic reproductive number and numerical simulations. At its best the study suggests that targeted education campaigns, which are effective at stopping transmission of typhoid more than 40% of the time, will be highly effective at controlling the disease in the community. 

Evaluation of Packaging Conditions Influence on the Content of Amino Acids of Marinated Venison

Venison is well known as a traditional meat type in Europe and it is lower in calories, cholesterol and fat content than common cuts of beef, pork or lamb. The aim of the current research was to determine content of amino acids (LVS ISO 13903:2005) in different types of marinades marinated venison during storage. Beef as a control was analyzed for comparison of obtained results. The meat (2x3x2cm) pieces were marinated in two different types of marinades: red wine and tomato sauce marinade. The prepared meat samples were stored (marinated) at 4±2ºC temperature for 48±1h. Marinated meat was placed in polypropylene trays, hermetically sealed with high barrier polymer film under modified atmosphere (C02 40%+N2 60%) without and with iron based oxygen scavenger sachets (Mitsubishi Gas Chemical Europe Ageless®), all samples were compared with packed marinated products in air ambiance. Results of current research show that changes of amino acids content in marinated venison mainly depend on packaging conditions.

Adsorption of Ferrous and Ferric Ions in Aqueous and Industrial Effluent onto Pongamia pinnata Tree Bark

One of the causes of water pollution is the presence of heavy metals in water. In the present study, an adsorbent prepared from the raw bark of the Pongamia pinnata tree is used for the removal of ferrous or ferric ions from aqueous and waste water containing heavy metals. Adsorption studies were conducted at different pH, concentration of metal ion, amount of adsorbent, contact time, agitation and temperature. The Langmuir and Freundlich adsorption isotherm models were applied for the results. The Langmuir isotherms were best fitted by the equilibrium data. The maximum adsorption was found to 146mg/g in waste water at a temperature of 30°C which is in agreement as comparable to the adsorption capacity of different adsorbents reported in literature. Pseudo second order model best fitted the adsorption of both ferrous and ferric ions.

Mathematical Model of Depletion of Forestry Resource: Effect of Synthetic Based Industries

A mathematical model is proposed considering the forest biomass density B(t), density of wood based industries W(t) and density of synthetic industries S(t). It is assumed that the forest biomass grows logistically in the absence of wood based industries, but depletion of forestry biomass is due to presence of wood based industries. The growth of wood based industries depends on B(t), while S(t) grows at a constant rate, independent of B(t). Further there is a competition between W(t) and S(t) according to market demand. The proposed model has four ecologically feasible steady states, namely, E1: forest biomass free and wood industries free equilibrium; E2: wood industries free equilibrium and two coexisting equilibria E∗1 , E∗2 . Behavior of the system near all feasible equilibria is analyzed using the stability theory of differential equations. In the proposed model, the natural depletion rate h1 is a crucial parameter and system exhibits Hopf-bifurcation about the non-trivial equilibrium with respect to h1. The analytical results are verified using numerical simulation.

Study of Effective Moisture Diffusivity of Oak Acorn

The purpose of present work was to study the drying kinetics of whole acorn and its kernel at different drying air temperatures and their effective moisture diffusivity. The results indicated that the drying time of whole acorn was 442, 206 and 188 min at the air temperature of 65, 75 and 85ºC, respectively. At the same temperatures, the drying time of kernel was 131, 56 and 76min. The results showed that the effect of drying air temperature increasing on the drying time reduction could not be significant on acorn drying at all conditions. The effective moisture diffusivity of whole acorn and kernel increased with increasing air temperature from 65 to 75ºC. However more air temperature increasing, led to decreasing this property of acorn kernel. The critical temperature of acorn drying was about 75°C in which acorn kernel had the highest effective moisture diffusivity.

Simulation of Reactive Distillation: Comparison of Equilibrium and Nonequilibrium Stage Models

In the present study, two distinctly different approaches are followed for modeling of reactive distillation column, the equilibrium stage model and the nonequilibrium stage model. These models are simulated with a computer code developed in the present study using MATLAB programming. In the equilibrium stage models, the vapor and liquid phases are assumed to be in equilibrium and allowance is made for finite reaction rates, where as in the nonequilibrium stage models simultaneous mass transfer and reaction rates are considered. These simulated model results are validated from the experimental data reported in the literature. The simulated results of equilibrium and nonequilibrium models are compared for concentration, temperature and reaction rate profiles in a reactive distillation column for Methyl Tert Butyle Ether (MTBE) production. Both the models show similar trend for the concentration, temperature and reaction rate profiles but the nonequilibrium model predictions are higher and closer to the experimental values reported in the literature.

A Robust Deterministic Energy Smart-Grid Decisional Algorithm for Agent-Based Management

This paper is concerning the application of a deterministic decisional pattern to a multi-agent system which would provide intelligence to a distributed energy smart grid at local consumer level. Development of multi-agent application involves agent specifications, analysis, design and realization. It can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach to control the smart grid system in a decentralized competitive approach. The proposed algorithmic solution results from a deterministic dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems. Through memory of collected past tries, the algorithm monotonically converges to very steep system operation point in attraction basin resulting from weak system nonlinearity. In this sense, system is given by (local) constitutive elementary rules the intelligence of its global existence so that it can self-organize toward optimal operating sequence.