Grid Computing in Physics and Life Sciences

Certain sciences such as physics, chemistry or biology, have a strong computational aspect and use computing infrastructures to advance their scientific goals. Often, high performance and/or high throughput computing infrastructures such as clusters and computational Grids are applied to satisfy computational needs. In addition, these sciences are sometimes characterised by scientific collaborations requiring resource sharing which is typically provided by Grid approaches. In this article, I discuss Grid computing approaches in High Energy Physics as well as in bioinformatics and highlight some of my experience in both scientific domains.

Heterogeneous Artifacts Construction for Software Evolution Control

The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.

Study on the Effect of Volume Fraction of Dual Phase Steel to Corrosion Behaviour and Hardness

The objective of this project is to study the corrosion behaviour and hardness based on the presence of martensite in dual phase steel. This study was conducted on six samples of dual phase steel which have different percentage of martensite. A total of 9 specimens were prepared by intercritical annealing process to study the effect of temperature to the formation of martensite. The low carbon steels specimens were heated for 25 minutes in a specified temperature ranging from 7250C to 8250C followed by rapid cooling in water. The measurement of corrosion rate was done by using extrapolation tafel method, while potentiostat was used to control and measured the current produced. This measurement is performed through a system named CMS105. The result shows that a specimen with higher percentage of martensite is likely to corrode faster. Hardness test for each specimen was conducted to compare its hardness with low carbon steel. The results obtained indicate that the specimen hardness is proportional to the amount of martensite in dual phase steel.

Static Voltage Stability Assessment Considering the Power System Contingencies using Continuation Power Flow Method

According to the increasing utilization in power system, the transmission lines and power plants often operate in stability boundary and system probably lose its stable condition by over loading or occurring disturbance. According to the reasons that are mentioned, the prediction and recognition of voltage instability in power system has particular importance and it makes the network security stronger.This paper, by considering of power system contingencies based on the effects of them on Mega Watt Margin (MWM) and maximum loading point is focused in order to analyse the static voltage stability using continuation power flow method. The study has been carried out on IEEE 14-Bus Test System using Matlab and Psat softwares and results are presented.

A Hidden Dimension in Site Planning: Exploring Affective Experience as Part of Sense of Place on the Farm Kromdraai, Vredefort Dome World Heritage Site, South Africa

Uniqueness and distinctiveness of localities (referred to as genius loci or sense of place) are important to ensure people-s identification with their locality. Existing frameworks reveals that the affective dimension of environments is rarely mentioned or explored and limited public participation was used in constructing the frameworks. This research argues that the complexity of sense of place would be recognised and appropriate planning guidelines formulated by exploring and integrating the affective dimension of a site. Aims of the research therefore are to (i) explore relational dimensions between people and a natural rural landscape, (ii) to implement a participatory approach to obtain insight into different relational dimensions, and (ii) to concretise socio-affective relational dimensions into site planning guidelines. A qualitative, interdisciplinary research approach was followed and conducted on the farm Kromdraai, Vredefort Dome World Heritage Site. In essence the first phase of the study reveals various affective responses and projections of personal meanings. The findings in phase 1 informed the second phase, to involve people from various disciplines and different involvement with the area to make visual presentations of appropriate planning and design of the site in order to capture meanings of the interactions between people and their environment. Final site planning and design guidelines were formulated, based on these. This research contributed to provide planners with new possibilities of exploring the dimensions between people and places as well as to develop appropriate methods for participation to obtain insight into the underlying meanings of sites.

A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring

In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.

Action Potential Propagation in Inhomogeneous 2D Mouse Ventricular Tissue Model

Heterogeneous repolarization causes dispersion of the T-wave and has been linked to arrhythmogenesis. Such heterogeneities appear due to differential expression of ionic currents in different regions of the heart, both in healthy and diseased animals and humans. Mice are important animals for the study of heart diseases because of the ability to create transgenic animals. We used our previously reported model of mouse ventricular myocytes to develop 2D mouse ventricular tissue model consisting of 14,000 cells (apical or septal ventricular myocytes) and to study the stability of action potential propagation and Ca2+ dynamics. The 2D tissue model was implemented as a FORTRAN program code for highperformance multiprocessor computers that runs on 36 processors. Our tissue model is able to simulate heterogeneities not only in action potential repolarization, but also heterogeneities in intracellular Ca2+ transients. The multicellular model reproduced experimentally observed velocities of action potential propagation and demonstrated the importance of incorporation of realistic Ca2+ dynamics for action potential propagation. The simulations show that relatively sharp gradients of repolarization are predicted to exist in 2D mouse tissue models, and they are primarily determined by the cellular properties of ventricular myocytes. Abrupt local gradients of channel expression can cause alternans at longer pacing basic cycle lengths than gradual changes, and development of alternans depends on the site of stimulation.

A Fast Block-based Evolutional Algorithm for Combinatorial Problems

The problems with high complexity had been the challenge in combinatorial problems. Due to the none-determined and polynomial characteristics, these problems usually face to unreasonable searching budget. Hence combinatorial optimizations attracted numerous researchers to develop better algorithms. In recent academic researches, most focus on developing to enhance the conventional evolutional algorithms and facilitate the local heuristics, such as VNS, 2-opt and 3-opt. Despite the performances of the introduction of the local strategies are significant, however, these improvement cannot improve the performance for solving the different problems. Therefore, this research proposes a meta-heuristic evolutional algorithm which can be applied to solve several types of problems. The performance validates BBEA has the ability to solve the problems even without the design of local strategies.

On the Parameter Optimization of Fuzzy Inference Systems

Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.

State-Space PD Feedback Control

A challenged control problem is when the performance is pushed to the limit. The state-derivative feedback control strategy directly uses acceleration information for feedback and state estimation. The derivative part is concerned with the rateof- change of the error with time. If the measured variable approaches the set point rapidly, then the actuator is backed off early to allow it to coast to the required level. Derivative action makes a control system behave much more intelligently. A sensor measures the variable to be controlled and the measured in formation is fed back to the controller to influence the controlled variable. A high gain problem can be also formulated for proportional plus derivative feedback transformation. Using MATLAB Simulink dynamic simulation tool this paper examines a system with a proportional plus derivative feedback and presents an automatic implementation of finding an acceptable controlled system. Using feedback transformations the system is transformed into another system.

Structural Sustainability Techniques for RC High Rise Buildings

Over the early years of the 21st century, cities throughout the Middle East, particularly in the Gulf region have expanded more rapidly than ever before. Given the presence of a large volume of high-rise buildings allover the region, the local authority aims to set a new standard for sustainable development; with an integrated approach to maintain a balance between economy, quality, environmental protection and safety of life. In the very near future, as mandatory requirements, sustainability will be the criteria that should be included in all building projects. It is well known in the building sustainability topics that structural design engineers do not have a key role in this matter. In addition, the LEED (Leadership in Energy and Environmental Design) has looked almost exclusively on the environmental components and materials specifications. The objective of this paper is to focus and establish groundwork for sustainability techniques and applications related to the RC high-rise buildings design, from the structural point of view. A set of recommendations related to local conditions, structural modeling and analysis is given, and some helpful suggestions for structural design team work are addressed. This paper attempts to help structural engineers in identifying the building sustainability design, in order to meet local needs and achieve alternative solutions at an early stage of project design.

The Influence of Ancient Artifacts on Contemporary Culture (exemplified by the Painting and Sculpture of Kazakhstan)

Petroglyphs, stone sculptures, burial mounds, and other memorial religious structures are ancient artifacts which find reflection in contemporary world culture, including the culture of Kazakhstan. In this article, the problem of the influence of ancient artifacts on contemporary culture is researched, using as an example Kazakhstan-s sculpture and painting. The practice of creating petroglyphs, stone sculptures, and memorial religious structures was closely connected to all fields of human existence, which fostered the formation of and became an inseparable part of a traditional worldview. The ancient roots of Saka-Sythian and Turkic nomadic culture have been studied, and integrated into the foundations of the contemporary art of Kazakhstan. The study of the ancient cultural heritage of Kazakhstan by contemporary artists, sculptors and architects, as well as the influence of European art and cultures on the art of Kazakhstan are furthering the development of a new national art.

Relationship between Food Resources and Brooding Site by Asiatic Houbara (Chlamydotis macqueenii ) in Central Steppe of Iran

Knowledge of food resource of the houbara which an endangered species would be a important step toward the preservation of this bird. Adequate study has not been done in this field and therefore the food sources of the houbara during the brooding season was studied in the central steppe of Iran. In order to determine the density of insect in plant communities the pitfall trap was used , positioned in five linear transects divided between plant communities and in two repetitions. The results showed that the among communities there was a significant difference in term of the number beetles and ants ( p= 0.01, F2, 29= 4.66) collectively. Also bush steppe habitat had a higher arthropoda density in comparison with the shrub steppe habitat. Considering that most houbara nests were found in the bush steppe habitat .It seems this habitat provides the most available food supply for the houbara chicks.

Feasibility Study on Vanillin Production from Jatropha curcas Stem Using Steam Explosion as a Pretreatment

Jatropha curcas stem was analyzed for chemical compositions: 19.11% pentosan, 42.99% alphacellulose and 24.11% lignin based on dry weight of 100-g raw material. The condition to fractionate cellulose, hemicellulose and lignin in J. curcas stem using steam explosion was optimized. The procedure started from cutting J. curcas stem into small pieces and soaked in water for overnight. After that, they were steam exploded at 214 °C and 21 kg/cm2 for 5 min. The obtained hydrolysate contained 1.55 g/L ferulic acid which after that was used as substrate for vanillin production by Aspergillus niger and Pycnoporus cinnabarinus in one-step process. The maximum 0.65 g/L of vanillin were obtained with the conversion rate of 45.2% based on the initial ferulic acid.

Value–based Group Decision on Support Bridge Selection

Value-based group decision is very complicated since many parties involved. There are different concern caused by differing preferences, experiences, and background. Therefore, a support system is required to enable each stakeholder to evaluate and rank the solution alternatives before engaging into negotiation with the other stakeholders. The support system is based on combination between value-based analysis, multi criteria group decision making based on satisfying options, and negotiation process based on coalition formation. This paper presents the group decision and negotiation on the selection of suitable material for a support bridge structure involving three decision makers, who are an estate manager, a project manager, and an engineer. There are three alternative solutions for the material of the support bridge structure, which are (a1) steel structure, (a2) reinforced concrete structure and (a3) wooden structure.

Academic Mobbing in Turkey

People at workplace always face with stress and feel it in their lives. There are many factors that create stress and mobbing is one of them. Mobbing is a psychological terror, conducted systematically toward an individual by others at the same workplace. Mobbing started to become a famous subject last years in U.S and Europe. In Turkey, it is a new concept not because it does not occur, because of human nature that does not allow confessing it. Mobbing is being ignored by people, organizations and also government in our country. The focus of this study will be mobbing in Turkey by examining the workplace mobbing among Turkish academicians. There are other studies about mobbing in Turkey but none of them studied academy. Because mobbing methods change according to sectors and occupations, it is important to analyze each sector to understand the methods used in mobbing and the reactions of victims to these actions. The concept is analyzed in detail before focusing on mobbing at universities. This paper will be unique because there is no information about this specific subject in Turkish literature. In this paper, both qualitative and quantitative methods will be used to describe the mobbing at Turkish academic environment.

Context Modeling and Context-Aware Service Adaptation for Pervasive Computing Systems

Devices in a pervasive computing system (PCS) are characterized by their context-awareness. It permits them to provide proactively adapted services to the user and applications. To do so, context must be well understood and modeled in an appropriate form which enhance its sharing between devices and provide a high level of abstraction. The most interesting methods for modeling context are those based on ontology however the majority of the proposed methods fail in proposing a generic ontology for context which limit their usability and keep them specific to a particular domain. The adaptation task must be done automatically and without an explicit intervention of the user. Devices of a PCS must acquire some intelligence which permits them to sense the current context and trigger the appropriate service or provide a service in a better suitable form. In this paper we will propose a generic service ontology for context modeling and a context-aware service adaptation based on a service oriented definition of context.

An Approximate Solution of the Classical Van der Pol Oscillator Coupled Gyroscopically to a Linear Oscillator Using Parameter-Expansion Method

In this article, we are dealing with a model consisting of a classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. The major problem is analyzed. The regular dynamics of the system is considered using analytical methods. In this case, we provide an approximate solution for this system using parameter-expansion method. Also, we find approximate values for frequencies of the system. In parameter-expansion method the solution and unknown frequency of oscillation are expanded in a series by a bookkeeping parameter. By imposing the non-secularity condition at each order in the expansion the method provides different approximations to both the solution and the frequency of oscillation. One iteration step provides an approximate solution which is valid for the whole solution domain.

Influence of Heterogeneous Traffic on the Roadside Fine (PM2.5 and PM1) and Coarse(PM10) Particulate Matter Concentrations in Chennai City, India

In this paper the influence of heterogeneous traffic on the temporal variation of ambient PM10, PM2.5 and PM1 concentrations at a busy arterial route (Sardar Patel Road) in the Chennai city has been analyzed. The hourly PM concentration, traffic counts and average speed of the vehicles have been monitored at the study site for one week (19th-25th January 2009). Results indicated that the concentrations of coarse (PM10) and fine PM (PM2.5 and PM1) concentrations at SP road are having similar trend during peak and non-peak hours, irrespective of the days. The PM concentrations showed daily two peaks corresponding to morning (8 to 10 am) and evening (7 to 9 pm) peak hour traffic flow. The PM10 concentration is dominated by fine particles (53% of PM2.5 and 45% of PM1). The high PM2.5/PM10 ratio indicates that the majority of PM10 particles originate from re-suspension of road dust. The analysis of traffic flow at the study site showed that 2W, 3W and 4W are having similar diurnal trend as PM concentrations. This confirms that the 2W, 3W and 4W are the main emission source contributing to ambient PM concentration at SP road. The speed measurement at SP road showed that the average speed of 2W, 3W, 4W, LCV and HCV are 38, 40, 38, 40 and 38 km/hr and 43, 41, 42, 40 and 41 km/hr respectively for the weekdays and weekdays.

Evaluation of Model and Performance of Fuel Cell Hybrid Electric Vehicle in Different Drive Cycles

In recent years fuel cell vehicles are rapidly appearing all over the globe. In less than 10 years, fuel cell vehicles have gone from mere research novelties to operating prototypes and demonstration models. At the same time, government and industry in development countries have teamed up to invest billions of dollars in partnerships intended to commercialize fuel cell vehicles within the early years of the 21st century. The purpose of this study is evaluation of model and performance of fuel cell hybrid electric vehicle in different drive cycles. A fuel cell system model developed in this work is a semi-experimental model that allows users to use the theory and experimental relationships in a fuel cell system. The model can be used as part of a complex fuel cell vehicle model in advanced vehicle simulator (ADVISOR). This work reveals that the fuel consumption and energy efficiency vary in different drive cycles. Arising acceleration and speed in a drive cycle leads to Fuel consumption increase. In addition, energy losses in drive cycle relates to fuel cell system power request. Parasitic power in different parts of fuel cell system will increase when power request increases. Finally, most of energy losses in drive cycle occur in fuel cell system because of producing a lot of energy by fuel cell stack.