Damage of Tubular Equipment in Process Industry

Tubular process equipment is often damaged in industrial processes. The damage occurs both on devices working at high temperatures and also on less exposed devices. In case of sudden damage of key equipment a shutdown of the whole production unit and resulting significant economic losses are imminent. This paper presents a solution of several types of tubular process equipment. The causes of damage and suggestions of correction actions are discussed in all cases. Very important part is the analysis of operational conditions, determination of unfavourable working states decreasing lifetime of devices and suggestions of correction actions. Lately very popular numerical methods are used for analysis of the equipment.

Error Propagation of the Hidden-Point Bar Method: Effect of Bar Geometry

The hidden-point bar method is useful in many surveying applications. The method involves determining the coordinates of a hidden point as a function of horizontal and vertical angles measured to three fixed points on the bar. Using these measurements, the procedure involves calculating the slant angles, the distances from the station to the fixed points, the coordinates of the fixed points, and then the coordinates of the hidden point. The propagation of the measurement errors in this complex process has not been fully investigated in the literature. This paper evaluates the effect of the bar geometry on the position accuracy of the hidden point which depends on the measurement errors of the horizontal and vertical angles. The results are used to establish some guidelines regarding the inclination angle of the bar and the location of the observed points that provide the best accuracy.

Algebraic Specification of Serializability for Partitioned Transactions

The usual correctness condition for a schedule of concurrent database transactions is some form of serializability of the transactions. For general forms, the problem of deciding whether a schedule is serializable is NP-complete. In those cases other approaches to proving correctness, using proof rules that allow the steps of the proof of serializability to be guided manually, are desirable. Such an approach is possible in the case of conflict serializability which is proved algebraically by deriving serial schedules using commutativity of non-conflicting operations. However, conflict serializability can be an unnecessarily strong form of serializability restricting concurrency and thereby reducing performance. In practice, weaker, more general, forms of serializability for extended models of transactions are used. Currently, there are no known methods using proof rules for proving those general forms of serializability. In this paper, we define serializability for an extended model of partitioned transactions, which we show to be as expressive as serializability for general partitioned transactions. An algebraic method for proving general serializability is obtained by giving an initial-algebra specification of serializable schedules of concurrent transactions in the model. This demonstrates that it is possible to conduct algebraic proofs of correctness of concurrent transactions in general cases.

Dissipation of Higher Mode using Numerical Integration Algorithm in Dynamic Analysis

In general dynamic analyses, lower mode response is of interest, however the higher modes of spatially discretized equations generally do not represent the real behavior and not affects to global response much. Some implicit algorithms, therefore, are introduced to filter out the high-frequency modes using intended numerical error. The objective of this study is to introduce the P-method and PC α-method to compare that with dissipation method and Newmark method through the stability analysis and numerical example. PC α-method gives more accuracy than other methods because it based on the α-method inherits the superior properties of the implicit α-method. In finite element analysis, the PC α-method is more useful than other methods because it is the explicit scheme and it achieves the second order accuracy and numerical damping simultaneously.

An Investigation into Kanji Character Discrimination Process from EEG Signals

The frontal area in the brain is known to be involved in behavioral judgement. Because a Kanji character can be discriminated visually and linguistically from other characters, in Kanji character discrimination, we hypothesized that frontal event-related potential (ERP) waveforms reflect two discrimination processes in separate time periods: one based on visual analysis and the other based on lexcical access. To examine this hypothesis, we recorded ERPs while performing a Kanji lexical decision task. In this task, either a known Kanji character, an unknown Kanji character or a symbol was presented and the subject had to report if the presented character was a known Kanji character for the subject or not. The same response was required for unknown Kanji trials and symbol trials. As a preprocessing of signals, we examined the performance of a method using independent component analysis for artifact rejection and found it was effective. Therefore we used it. In the ERP results, there were two time periods in which the frontal ERP wavefoms were significantly different betweeen the unknown Kanji trials and the symbol trials: around 170ms and around 300ms after stimulus onset. This result supported our hypothesis. In addition, the result suggests that Kanji character lexical access may be fully completed by around 260ms after stimulus onset.

A New Quantile Based Fuzzy Time Series Forecasting Model

Time series models have been used to make predictions of academic enrollments, weather, road accident, casualties and stock prices, etc. Based on the concepts of quartile regression models, we have developed a simple time variant quantile based fuzzy time series forecasting method. The proposed method bases the forecast using prediction of future trend of the data. In place of actual quantiles of the data at each point, we have converted the statistical concept into fuzzy concept by using fuzzy quantiles using fuzzy membership function ensemble. We have given a fuzzy metric to use the trend forecast and calculate the future value. The proposed model is applied for TAIFEX forecasting. It is shown that proposed method work best as compared to other models when compared with respect to model complexity and forecasting accuracy.

Comparison of Frequency Estimation Methods for Reflected Signals in Mobile Platforms

Precise frequency estimation methods for pulseshaped echoes are a prerequisite to determine the relative velocity between sensor and reflector. Signal frequencies are analysed using three different methods: Fourier Transform, Chirp ZTransform and the MUSIC algorithm. Simulations of echoes are performed varying both the noise level and the number of reflecting points. The superposition of echoes with a random initial phase is found to influence the precision of frequency estimation severely for FFT and MUSIC. The standard deviation of the frequency using FFT is larger than for MUSIC. However, MUSIC is more noise-sensitive. The distorting effect of superpositions is less pronounced in experimental data.

Design of Buffer Management for Industry to Avoid Sensor Data- Conflicts

To reduce accidents in the industry, WSNs(Wireless Sensor networks)- sensor data is used. WSNs- sensor data has the persistence and continuity. therefore, we design and exploit the buffer management system that has the persistence and continuity to avoid and delivery data conflicts. To develop modules, we use the multi buffers and design the buffer management modules that transfer sensor data through the context-aware methods.

Application of Pearson Parametric Distribution Model in Fatigue Life Reliability Evaluation

The aim of this paper is to introduce a parametric distribution model in fatigue life reliability analysis dealing with variation in material properties. Service loads in terms of responsetime history signal of Belgian pave were replicated on a multi-axial spindle coupled road simulator and stress-life method was used to estimate the fatigue life of automotive stub axle. A PSN curve was obtained by monotonic tension test and two-parameter Weibull distribution function was used to acquire the mean life of the component. A Pearson system was developed to evaluate the fatigue life reliability by considering stress range intercept and slope of the PSN curve as random variables. Considering normal distribution of fatigue strength, it is found that the fatigue life of the stub axle to have the highest reliability between 10000 – 15000 cycles. Taking into account the variation of material properties associated with the size effect, machining and manufacturing conditions, the method described in this study can be effectively applied in determination of probability of failure of mass-produced parts.

Pt(IV) Complexes with Polystrene-bound Schiff Bases as Antimicrobial Agent: Synthesis and Characterization

Novel polystrene-bound Schiff bases and their Pt(IV) complexes have been prepared from condensation reaction of polystyrene-A-NH2 with 2-hydroxybenzaldehyde and 5-fluoro-3- bromo-2-hydroxybenzaldehyde. The structures of Pt(IV) complexes with polystyrene including Schiff bases have been determined by elemental analyses, magnetic susceptibility, IR, 1H-NMR, UV-vis, TG/DTA and AAS. The antibacterial and antifungal activities of the synthesized compounds have been studied by the well-diffusion method against some selected microorganisms: (Bacillus cereus spp., Listeria monocytogenes 4b, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermis, Brucella abortus, Escherichia coli, Pseudomonas putida spp., Shigella dysenteria type 10, Salmonella typhi H).

A New Method for Extracting Ocean Wave Energy Utilizing the Wave Shoaling Phenomenon

Fossil fuels are the major source to meet the world energy requirements but its rapidly diminishing rate and adverse effects on our ecological system are of major concern. Renewable energy utilization is the need of time to meet the future challenges. Ocean energy is the one of these promising energy resources. Threefourths of the earth-s surface is covered by the oceans. This enormous energy resource is contained in the oceans- waters, the air above the oceans, and the land beneath them. The renewable energy source of ocean mainly is contained in waves, ocean current and offshore solar energy. Very fewer efforts have been made to harness this reliable and predictable resource. Harnessing of ocean energy needs detail knowledge of underlying mathematical governing equation and their analysis. With the advent of extra ordinary computational resources it is now possible to predict the wave climatology in lab simulation. Several techniques have been developed mostly stem from numerical analysis of Navier Stokes equations. This paper presents a brief over view of such mathematical model and tools to understand and analyze the wave climatology. Models of 1st, 2nd and 3rd generations have been developed to estimate the wave characteristics to assess the power potential. A brief overview of available wave energy technologies is also given. A novel concept of on-shore wave energy extraction method is also presented at the end. The concept is based upon total energy conservation, where energy of wave is transferred to the flexible converter to increase its kinetic energy. Squeezing action by the external pressure on the converter body results in increase velocities at discharge section. High velocity head then can be used for energy storage or for direct utility of power generation. This converter utilizes the both potential and kinetic energy of the waves and designed for on-shore or near-shore application. Increased wave height at the shore due to shoaling effects increases the potential energy of the waves which is converted to renewable energy. This approach will result in economic wave energy converter due to near shore installation and more dense waves due to shoaling. Method will be more efficient because of tapping both potential and kinetic energy of the waves.

Electronic Voting System using Mobile Terminal

Electronic voting (E-voting) using an internet has been recently performed in some nations and regions. There is no spatial restriction which a voter directly has to visit the polling place, but an e-voting using an internet has to go together the computer in which the internet connection is possible. Also, this voting requires an access code for the e-voting through the beforehand report of a voter. To minimize these disadvantages, we propose a method in which a voter, who has the wireless certificate issued in advance, uses its own cellular phone for an e-voting without the special registration for a vote. Our proposal allows a voter to cast his vote in a simple and convenient way without the limit of time and location, thereby increasing the voting rate, and also ensuring confidentiality and anonymity.

Design of Moving Sliding Surfaces in A Variable Structure Plant and Chattering Phenomena

This paper deals with the design of a moving sliding surface in a variable structure plant for a second order system. The chattering phenomena is also dealt with during the switching process for an unstable sliding surface condition. The simulation examples considered in this paper shows the effectiveness of the sliding mode control method used for the design of the moving sliding surfaces. A simulink model of the continuous system was also developed in MATLAB-SIMULINK for the design and hence demonstrated. The phase portraits and the state plots shows the demonstration of the powerful control technique which can be applied for second order systems.

Study Interaction between Tin Dioxide Nanowhiskers and Ethanol Molecules in Gas Phase: Monte Carlo(MC) and Langevin Dynamics (LD) Simulation

Three dimensional nanostructure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. Tin dioxide is the most used material for gas sensing because its three-dimensional nanostructures and properties are related to the large surface exposed to gas adsorption. We propose the use of branch SnO2 nanowhiskers in interaction with ethanol. All Sn atoms are symmetric. The total energy, potential energy and Kinetic energy calculated for interaction between SnO2 and ethanol in different distances and temperatures. The calculations achieved by methods of Langevin Dynamic and Mont Carlo simulation. The total energy increased with addition ethanol molecules and temperature so interactions between them are endothermic.

A Modularized Design for Multi-Drivers Off-Road Vehicle Driving-Line and its Performance Assessment

Modularized design approach can facilitate the modeling of complex systems and support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Therefore it can improve the design efficiency and simplify the solving complicated problem. Multi-drivers off-road vehicle is comparatively complicated. Driving-line is an important core part to a vehicle; it has a significant contribution to the performance of a vehicle. Multi-driver off-road vehicles have complex driving-line, so its performance is heavily dependent on the driving-line. A typical off-road vehicle-s driving-line system consists of torque converter, transmission, transfer case and driving-axles, which transfer the power, generated by the engine and distribute it effectively to the driving wheels according to the road condition. According to its main function, this paper puts forward a modularized approach for designing and evaluation of vehicle-s driving-line. It can be used to effectively estimate the performance of driving-line during concept design stage. Through appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to the practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-drivers off-road vehicle.

Probabilistic Modelling of Marine Bridge Deterioration

Chloride induced corrosion of steel reinforcement is the main cause of deterioration of reinforced concrete marine structures. This paper investigates the relative performance of alternative repair options with respect to the deterioration of reinforced concrete bridge elements in marine environments. Focus is placed on the initiation phase of reinforcement corrosion. A laboratory study is described which involved exposing concrete samples to accelerated chloride-ion ingress. The study examined the relative efficiencies of two repair methods, namely Ordinary Portland Cement (OPC) concrete and a concrete which utilised Ground Granulated Blastfurnace Cement (GGBS) as a partial cement replacement. The mix designs and materials utilised were identical to those implemented in the repair of a marine bridge on the South East coast of Ireland in 2007. The results of this testing regime serve to inform input variables employed in probabilistic modelling of deterioration for subsequent reliability based analysis to compare the relative performance of the studied repair options.

Recursive Similarity Hashing of Fractal Geometry

A new technique of topological multi-scale analysis is introduced. By performing a clustering recursively to build a hierarchy, and analyzing the co-scale and intra-scale similarities, an Iterated Function System can be extracted from any data set. The study of fractals shows that this method is efficient to extract self-similarities, and can find elegant solutions the inverse problem of building fractals. The theoretical aspects and practical implementations are discussed, together with examples of analyses of simple fractals.

Multiwavelet and Biological Signal Processing

In this paper we are to find the optimum multiwavelet for compression of electrocardiogram (ECG) signals and then, selecting it for using with SPIHT codec. At present, it is not well known which multiwavelet is the best choice for optimum compression of ECG. In this work, we examine different multiwavelets on 24 sets of ECG data with entirely different characteristics, selected from MIT-BIH database. For assessing the functionality of the different multiwavelets in compressing ECG signals, in addition to known factors such as Compression Ratio (CR), Percent Root Difference (PRD), Distortion (D), Root Mean Square Error (RMSE) in compression literature, we also employed the Cross Correlation (CC) criterion for studying the morphological relations between the reconstructed and the original ECG signal and Signal to reconstruction Noise Ratio (SNR). The simulation results show that the Cardinal Balanced Multiwavelet (cardbal2) by the means of identity (Id) prefiltering method to be the best effective transformation. After finding the most efficient multiwavelet, we apply SPIHT coding algorithm on the transformed signal by this multiwavelet.

Parallel Direct Integration Variable Step Block Method for Solving Large System of Higher Order Ordinary Differential Equations

The aim of this paper is to investigate the performance of the developed two point block method designed for two processors for solving directly non stiff large systems of higher order ordinary differential equations (ODEs). The method calculates the numerical solution at two points simultaneously and produces two new equally spaced solution values within a block and it is possible to assign the computational tasks at each time step to a single processor. The algorithm of the method was developed in C language and the parallel computation was done on a parallel shared memory environment. Numerical results are given to compare the efficiency of the developed method to the sequential timing. For large problems, the parallel implementation produced 1.95 speed-up and 98% efficiency for the two processors.

Application of Nano Cutting Fluid under Minimum Quantity Lubrication (MQL) Technique to Improve Grinding of Ti – 6Al – 4V Alloy

Minimum Quantity Lubrication (MQL) technique obtained a significant attention in machining processes to reduce environmental loads caused by usage of conventional cutting fluids. Recently nanofluids are finding an extensive application in the field of mechanical engineering because of their superior lubrication and heat dissipation characteristics. This paper investigates the use of a nanofluid under MQL mode to improve grinding characteristics of Ti-6Al-4V alloy. Taguchi-s experimental design technique has been used in the present investigation and a second order model has been established to predict grinding forces and surface roughness. Different concentrations of water based Al2O3 nanofluids were applied in the grinding operation through MQL setup developed in house and the results have been compared with those of conventional coolant and pure water. Experimental results showed that grinding forces reduced significantly when nano cutting fluid was used even at low concentration of the nano particles and surface finish has been found to improve with higher concentration of the nano particles.