Simulation of Die Casting Process in an Industrial Helical Gearbox Flange Die

Flanges are widely used for connecting valves, pipes and other industrial devices such as gearboxes. Method of producing a flange has a considerable impact on the manner of their involvement with the industrial engines and gearboxes. By Using die casting instead of sand casting and machining for manufacturing flanges, production speed and dimensional accuracy of the parts increases. Also, in die casting, obtained dimensions are close to final dimensions and hence the need for machining flanges after die casting process decreases which makes a significant savings in raw materials and improves the mechanical properties of flanges. In this paper, a typical die of an industrial helical gearbox flange (size ISO 50) was designed and die casting process for producing this type of flange was simulated using ProCAST software. The results of simulation were used for optimizing die design. Finally, using the results of the analysis, optimized die was built.

Material Characterization and Numerical Simulation of a Rubber Bumper

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate a FEM model which is accurate and competitive for a future shape optimization task.

A Review of Control Schemes for Active Power Filters in Order to Power Quality Improvement

Power quality has become a very important issue recently due to the impact on electricity suppliers, equipment manufacturers and customers. Power quality is described as the variation of voltage, current and frequency in a power system. Voltage magnitude is one of the major factors that determine the quality of power. Indeed, custom power technology, the low-voltage counterpart of the more widely known flexible ac transmission system (FACTS) technology, aimed at high-voltage power transmission applications, has emerged as a credible solution to solve many problems relating to power quality problems. There are various power quality problems such as voltage sags, swells, flickers, interruptions and harmonics etc. Active Power Filter (APF) is one of the custom power devices and can mitigate harmonics, reactive power and unbalanced load currents originating from load side. In this study, an extensive review of APF studies, the advantages and disadvantages of each introduced methods are presented. The study also helps the researchers to choose the optimum control techniques and power circuit configuration for APF applications.

Detection ofTensile Forces in Cable-Stayed Structures Using the Advanced Hybrid Micro-Genetic Algorithm

This study deals with an advanced numerical techniques to detect tensile forces in cable-stayed structures. The proposed method allows us not only to avoid the trap of minimum at initial searching stage but also to find their final solutions in better numerical efficiency. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the cable model modeled using the finite element method. The results indicate that the proposed method is computationally efficient in characterizing the tensile force variation for cable-stayed structures.

Sustainability as a Criterion in the Reconstruction of Libya’s Public Transport Infrastructure

Amongst the many priorities facing Libya following the 2011 uprising is the provision of a transport infrastructure that will meet the nation’s needs and not undermine its prospects for economic prosperity as with many developing economies non-technical issues such as management, planning and financing are the major barriers to the efficient and effective provision of transport infrastructure. This is particularly true in the case of the effective incorporation of sustainability criteria, and the research upon which this paper is based involves the examination of alternative ways of approaching this problem. It is probably fair to say that criteria that relate to sustainability have not, historically, featured strongly in Libya’s approach to the development of its transport infrastructure. However, the current reappraisal of how best to redevelop the country’s transport infrastructure that has been afforded by recent events may offer the opportunity to alter this. The research examines recent case studies from a number of countries to explore ways in which sustainability has been included as a criterion for planning and procurement decisions. There will also be an in-depth investigation into the Libyan planning and legislative context to examine the feasibility of the introduction of such sustainability criteria into the process of planning and procurement of Libya’s transport infrastructure.

Genetic Polymorphisms and Haplotype Structure of the Organic Cation Transporter 1 Gene in the Zulu Population of South Africa

Organic cation transporter (OCT) 1could influence an individual’s response to various treatments and increase their susceptibility to diseases.Genotypic and allelic frequencies of nineteen non-synonymous and one intronic Single Nucleotide Polymorphism (SNP) from the OCT1 gene were determined in 101 unrelated healthy Zulu participants, using a SNaPshot® multiplex assay. Minor allele frequencies (MAF)were compared to representative populations of Africa, Asia and Europe, from Ensembl. MAFs for S14F, V519F, rs622342 and P341L were 2.0%, 6.0%, 6.0% and 1.0%, respectively. Sixteen of nineteen investigated non-synonymous SNPs were monomorphic. No study participant harbored variant alleles for S189L, G220V, P283L, G401S, M420V, M440I, G465R, I542V, R61C, R287G, C88S, A306T, A413V, I421F, C436F and V501E. Haplotype, CGTCGCCGCGCAAGAGGTGA, was most frequently observed (81.23%).Further investigations are encouraged to evaluate potential roles these SNPs could play in the therapeutic efficacy of clinically important drugs and in the development of various diseases in the Zulu population.

Delay-Dependent Stability Analysis for Neural Networks with Distributed Delays

This paper deals with the problem of delay-dependent stability for neural networks with distributed delays. Some new sufficient condition are derived by constructing a novel Lyapunov-Krasovskii functional approach. The criteria are formulated in terms of a set of linear matrix inequalities, this is convenient for numerically checking the system stability using the powerful MATLAB LMI Toolbox. Moreover, in order to show the stability condition in this paper gives much less conservative results than those in the literature, numerical examples are considered.

Tribological Investigation and the Effect of Karanja Biodiesel on Engine Wear in Compression Ignition Engine

Various biomass based resources, which can be used as an extender, or a complete substitute of diesel fuel may have very significant role in the development of agriculture, industrial and transport sectors in the energy crisis. Use of Karanja oil methyl ester biodiesel in a CI DI engine was found highly compatible with engine performance along with lower exhaust emission as compared to diesel fuel but with slightly higher NOx emission and low wear characteristics. The combustion related properties of vegetable oils are somewhat similar to diesel oil. Neat vegetable oils or their blends with diesel, however, pose various long-term problems in compression ignition engines. These undesirable features of vegetable oils are because of their inherent properties like high viscosity, low volatility, and polyunsaturated character. Pongamia methyl ester (PME) was prepared by transesterification process using methanol for long term engine operations. The physical and combustion-related properties of the fuels thus developed were found to be closer to that of the diesel. A neat biodiesel (PME) was selected as a fuel for the tribological study of biofuels. Two similar new engines were completely disassembled and subjected to dimensioning of various vital moving parts and then subjected to long-term endurance tests on neat biodiesel and diesel respectively. After completion of the test, both the engines were again disassembled for physical inspection and wear measurement of various vital parts. The lubricating oil samples drawn from both engines were subjected to atomic absorption spectroscopy (AAS) for measurement of various wear metal traces present. The additional lubricating property of biodiesel fuel due to higher viscosity as compared to diesel fuel resulted in lower wear of moving parts and thus improved the engine durability with a bio-diesel fuel. Results reported from AAS tests confirmed substantially lower wear and thus improved life for biodiesel operated engines.

Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect

High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH, as a sustainable material, instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.

Low Power CNFET SRAM Design

CNFET has emerged as an alternative material to silicon for high performance, high stability and low power SRAM design in recent years. SRAM functions as cache memory in computers and many portable devices. In this paper, a new SRAM cell design based on CNFET technology is proposed. The proposed SRAM cell design for CNFET is compared with SRAM cell designs implemented with the conventional CMOS and FinFET in terms of speed, power consumption, stability, and leakage current. The HSPICE simulation and analysis show that the dynamic power consumption of the proposed 8T CNFET SRAM cell’s is reduced about 48% and the SNM is widened up to 56% compared to the conventional CMOS SRAM structure at the expense of 2% leakage power and 3% write delay increase.

Graphene Based Electronic Device

The semiconductor industry is placing an increased emphasis on emerging materials and devices that may provide improved performance, or provide novel functionality for devices. Recently, graphene, as a true two-dimensional carbon material, has shown fascinating applications in electronics. In this paper detailed discussions are introduced for possible applications of grapheme Transistor in RF and digital devices.

Localization of Mobile Robots with Omnidirectional Cameras

Localization of mobile robots are important tasks for developing autonomous mobile robots. This paper proposes a method to estimate positions of a mobile robot using a omnidirectional camera on the robot. Landmarks for points of references are set up on a field where the robot works. The omnidirectional camera which can obtain 360 [deg] around images takes photographs of these landmarks. The positions of the robots are estimated from directions of these landmarks that are extracted from the images by image processing. This method can obtain the robot positions without accumulative position errors. Accuracy of the estimated robot positions by the proposed method are evaluated through some experiments. The results show that it can obtain the positions with small standard deviations. Therefore the method has possibilities of more accurate localization by tuning of appropriate offset parameters.

Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

 A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.

Serological IgG Testing to Diagnose Alimentary Induced Diseases and Monitoring Efficacy of an Individual Defined Diet in Dogs

Background. Food-related allergies and intolerances are frequently occurring in dogs. Diagnosis and monitoring according ‘Golden Standard’ of elimination efficiency is, however, time consuming, expensive, and requires expert clinical setting. In order to facilitate rapid and robust, quantitative testing of intolerance, and determining the individual offending foods, a serological test is implicated for Alimentary Induced Diseases and manifestations. Method. As we developed Medisynx IgG Human Screening Test ELISA before and the dog’ immune system is most similar to humans, we were able to develop Medisynx IgG Dog Screening Test ELISA as well. In this randomized, double-blind, split-sample, retro perspective study 47 dogs suffering from Canine Atopic Dermatitis (CAD) and several secondary induced reactions were included to participate in serological Medisynx IgG Dog Screening Test ELISA (within < 0,02 % SD). Results were expressed as titers relative to the standard OD readings to diagnose alimentary induced diseases and monitoring efficacy of an individual eliminating diet in dogs. Split sample analysis was performed by independently sending 2 times 3 ml serum under two unique codes. Results. The veterinarian monitored these dogs to check dog’ results at least at 3, 7, 21, 49, 70 days and after period of 6 and 12 months on an individual negative diet and a positive challenge (retrospectively) at 6 months. Data of each dog were recorded in a screening form and reported that a complete recovery of all clinical manifestations was observed at or less than 70 days (between 50 and 70 days) in the majority of dogs (44 out of 47 dogs =93.6%). Conclusion. Challenge results showed a significant result of 100% in specificity as well as 100% positive predicted value. On the other hand, sensitivity was 95,7% and negative predictive value was 95,7%. In conclusion, an individual diet based on IgG ELISA in dogs provides a significant improvement of atopic dermatitis and pruritus including all other non-specific defined allergic skin reactions as erythema, itching, biting and gnawing at toes, as well as to several secondary manifestations like chronic diarrhoea, chronic constipation, otitis media, obesity, laziness or inactive behaviour, pain and muscular stiffness causing a movement disorders, excessive lacrimation, hyper behaviour, nervous behaviour and not possible to stay alone at home, anxiety, biting and aggressive behaviour and disobedience behaviour. Furthermore, we conclude that a relatively more severe systemic candidiasis, as shown by relatively higher titer (class 3 and 4 IgG reactions to Candida albicans), influence the duration of recovery from clinical manifestations in affected dogs. These findings are consistent with our preliminary human clinical studies.

Separation Characteristics of Dissolved Gases from Water Using a Polypropylene Hollow Fiber Membrane Module with High Surface Area

A polypropylene hollow fiber membrane module is used for separating dissolved gases which contain dissolved oxygen from water. These dissolved gases can be used for underwater breathing. To be used for a human, the minimum amount of oxygen is essential. To increase separation of dissolved gases, much water and high surface area of hollow fibers are requested. For efficient separation system, performance of single membrane module with high surface area needs to be investigated. In this study, we set up experimental devices for analyzing separation characteristics of dissolved gases including oxygen from water using a polypropylene hollow fiber membrane module. Separation of dissolved gases from water is investigated with variations of water flow rates. Composition of dissolved gases is also measured using GC. These results expect to be used in developing the portable separation system.

Capacity Building of Extension Agents for Sustainable Dissemination of Agricultural Information and Technologies in Developing Countries

Farmers are in need of regular and relevant information relating to new technologies. Production of extension materials has been found to be useful in facilitating the process. Extension materials help to provide information to reach large numbers of farmers quickly and economically. However, as good as extension materials are, previous materials produced are not used by farmers. The reasons for this include lack of involvement of farmers in the production of the extension materials, most of the extension materials are not relevant to the farmers’ environments, the agricultural extension agents lack capacity to prepare the materials, and many extension agents lack commitment. These problems led to this innovative capacity building of extension agents. This innovative approach involves five stages. The first stage is the diagnostic survey of farmers’ environment to collect useful information. The second stage is the development and production of draft extension materials. The third stage is the field testing and evaluation of draft materials by the same famers that were involved at the diagnostic stage. The fourth stage is the revision of the draft extension materials by incorporating suggestions from farmers. The fifth stage is the action plans. This process improves the capacity of agricultural extension agents in the preparation of extension materials and also promotes engagement of farmers and beneficiaries in the process. The process also makes farmers assume some level of ownership of the exercise and the extension materials.

Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Feature Level Fusion of Multimodal Images Using Haar Lifting Wavelet Transform

This paper presents feature level image fusion using Haar lifting wavelet transform. Feature fused is edge and boundary information, which is obtained using wavelet transform modulus maxima criteria. Simulation results show the superiority of the result as entropy, gradient, standard deviation are increased for fused image as compared to input images. The proposed methods have the advantages of simplicity of implementation, fast algorithm, perfect reconstruction, and reduced computational complexity. (Computational cost of Haar wavelet is very small as compared to other lifting wavelets.)

Design and Fabrication of a Miniaturized Microstrip Antenna Loaded by DNG Metamaterial

In this paper the design, fabrication, and testing of a miniaturized rectangular microstrip patch antenna loaded with DNG metamaterials is reported. The metamaterial is composed of two nested spiral strips and a single straight strip which are etched on two sides of a 5.7 mm×5.7 mm Rogers RT/duroid 5880 with 0.5 mm thickness and dielectric constant of 2.2. Two units of this structure as a double negative (DNG) medium in combination with air as a double positive (DPS) medium are used as substrate of the microstrip patch antenna. By placing these metamaterial structures under the patch, a sub-wavelength resonance occurs which leads to a smaller size patch antenna compared to the conventional antenna at that frequency. The total size of the proposed antenna is reduced 54.6%. The dimensions of the proposed patch antenna are significantly smaller than the wavelength of the operation frequency with respect to the conventional patch antenna. Simulation result and test result for the proposed patch antenna are given and compared.

High Directivity and Gain Enhancement for Small Planar Dipole Antenna at 11 GHz Using Symmetrical Pyramidal Block Based On Epsilon Negative Medium

This paper increases directivity and gain of Small Planar Dipole Antenna (SPDA) by using Symmetrical Pyramidal Block (SPB) which operates in X band at 11 GHz. The SPB consists four sides; each of which is metamaterial with Epsilon Negative Medium (ENG) and Epsilon Near-Zero (ENZ). The results simulated using the High Frequency Structure Simulator (HFSS) show that the SPB is capable of enhancing directivity and gain for the SPDA with maximum gain of 2.46 dB. The reflection coefficient is -13.7037 dB with narrow beam width.